Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Cell
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Cell

Advanced Search

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Follow PlantCell on Twitter
  • Visit PlantCell on Facebook
  • Visit Plantae
Research ArticleResearch Article
You have accessRestricted Access

Chimeric Proteins between cry1 and cry2 Arabidopsis Blue Light Photoreceptors Indicate Overlapping Functions and Varying Protein Stability

Margaret Ahmad, Jose A. Jarillo, Anthony R. Cashmore
Margaret Ahmad
Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: mahmad@sas.upenn.edu
Jose A. Jarillo
Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anthony R. Cashmore
Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published February 1998. DOI: https://doi.org/10.1105/tpc.10.2.197

  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Statistics from Altmetric.com

Article usage

Article usage: September 1999 to January 2021

AbstractFullPdf
Sep 1999555
Oct 199952010
Nov 19992115
Dec 19995148
Jan 20006102
Feb 20005119
Mar 200041711
Apr 200032322
May 200081410
Jun 20002136
Jul 200022012
Aug 2000186
Sep 2000489
Oct 20003114
Nov 200052520
Dec 200011612
Jan 200152813
Feb 200141413
Mar 200152320
Apr 2001155727
May 2001103614
Jun 200122214
Jul 20012139
Aug 20012137
Sep 200161515
Oct 200172318
Nov 20017911
Dec 20015203
Jan 200272019
Feb 200222618
Mar 20027137
Apr 2002287
May 200272018
Jun 200261214
Jul 200271922
Aug 20021107
Sep 200201310
Oct 200251415
Nov 2002131831
Dec 200261528
Jan 200381516
Feb 200321719
Mar 20038137
Apr 2003577
May 20035128
Jun 2003395
Jul 200381510
Aug 2003121911
Sep 20039279
Oct 2003291613
Nov 2003432616
Dec 2003161311
Jan 200424237
Feb 2004162811
Mar 2004304414
Apr 200411239
May 200412178
Jun 2004253812
Jul 200413217
Aug 200420339
Sep 200423365
Oct 200438428
Nov 2004346321
Dec 200423375
Jan 200515328
Feb 2005142516
Mar 2005164914
Apr 200515368
May 2005142310
Jun 2005102715
Jul 200517188
Aug 20059202
Sep 20057137
Oct 200516244
Nov 2005102311
Dec 2005141914
Jan 2006142712
Feb 2006132510
Mar 2006131712
Apr 2006142113
May 2006111712
Jun 2006151211
Jul 200614123
Aug 2006796
Sep 20061410714
Oct 2006174675
Nov 20062214325
Dec 200612157
Jan 2007121110
Feb 2007181111
Mar 200717139
Apr 2007281515
May 2007312412
Jun 2007112110
Jul 2007101111
Aug 200712917
Sep 2007877
Oct 200720118
Nov 200714919
Dec 200771611
Jan 2008946
Feb 20081257
Mar 2008261215
Apr 2008231012
May 200811119
Jun 2008142414
Jul 2008111417
Aug 20081078
Sep 20085713
Oct 20081168
Nov 200816928
Dec 2008161321
Jan 200928911
Feb 200927916
Mar 200910107
Apr 2009101012
May 20095816
Jun 2009775
Jul 2009767
Aug 20093118
Sep 20098910
Oct 20093614
Nov 20094915
Dec 2009038
Jan 2010478
Feb 2010868
Mar 2010161317
Apr 20101258
May 20101177
Jun 2010979
Jul 2010212
Aug 2010476
Sep 20107210
Oct 2010537
Nov 20101297
Dec 201014411
Jan 2011816
Feb 2011858
Mar 20112419
Apr 20111112
May 2011101223
Jun 201112821
Jul 201114410
Aug 2011101211
Sep 201118415
Oct 2011251123
Nov 201118415
Dec 2011131320
Jan 201213815
Feb 201214522
Mar 201216813
Apr 2012241120
May 2012111218
Jun 201234528
Jul 201212622
Aug 201225914
Sep 201219727
Oct 2012241411
Nov 2012272217
Dec 2012371011
Jan 2013242519
Feb 2013231410
Mar 2013291311
Apr 2013362026
May 201327924
Jun 201315521
Jul 20137715
Aug 20131986
Sep 20132795
Oct 201327129
Nov 2013181712
Dec 201317139
Jan 201425217
Feb 201411176
Mar 2014271413
Apr 2014333320
May 2014313317
Jun 201413189
Jul 201451305
Aug 2014232112
Sep 2014181715
Oct 201434611
Nov 201420157
Dec 2014192311
Jan 2015202013
Feb 20159268
Mar 201523174
Apr 2015282214
May 201511284
Jun 2015161710
Jul 201511208
Aug 201519184
Sep 201530266
Oct 2015241413
Nov 20151598
Dec 201518287
Jan 2016182410
Feb 201615175
Mar 2016141017
Apr 20167174
May 20166299
Jun 201615227
Jul 201616308
Aug 2016181911
Sep 201613335
Oct 2016182817
Nov 2016181013
Dec 2016142111
Jan 201721118
Feb 201723169
Mar 2017311611
Apr 20171756
May 201730167
Jun 20178175
Jul 20173266
Aug 201753214
Sep 2017123317
Oct 2017114022
Nov 2017147010
Dec 201711296
Jan 201843015
Feb 201810299
Mar 2018165612
Apr 2018133520
May 2018114110
Jun 2018184111
Jul 201863415
Aug 20185234
Sep 201822213
Oct 20185429
Nov 20185389
Dec 2018104013
Jan 20197198
Feb 20196179
Mar 201984022
Apr 201952118
May 20197349
Jun 201942637
Jul 2019103519
Aug 2019910128
Sep 201946810
Oct 20193718
Nov 201965721
Dec 201984623
Jan 202045318
Feb 202083617
Mar 2020113410
Apr 202063318
May 202061918
Jun 20202207
Jul 202072015
Aug 202062913
Sep 202043117
Oct 202052815
Nov 20207448
Dec 20208336
Jan 20216102

Author Information

  1. Margaret Ahmad1,
  2. Jose A. Jarillo and
  3. Anthony R. Cashmore
  1. Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018
  1. ↵1 To whom correspondence should be addressed. E-mail mahmad{at}sas.upenn.edu; fax 215-898-8780.
View Full Text

Cited By...

  • 127 Citations
  • 71 Citations
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms
    Gijsbertus T. J. van der Horst, Manja Muijtjens, Kumiko Kobayashi, Riya Takano, Shin-ichiro Kanno, Masashi Takao, Jan de Wit, Anton Verkerk, Andre P. M. Eker, Dik van Leenen, Ruud Buijs, Dirk Bootsma, Jan H. J. Hoeijmakers, Akira Yasui
    Nature 1999 398 6728
  • The Cryptochromes: Blue Light Photoreceptors in Plants and Animals
    Inês Chaves, Richard Pokorny, Martin Byrdin, Nathalie Hoang, Thorsten Ritz, Klaus Brettel, Lars-Oliver Essen, Gijsbertus T. J. van der Horst, Alfred Batschauer, Margaret Ahmad
    Annual Review of Plant Biology 2011 62 1
  • CRYPTOCHROMESTRUCTURE ANDSIGNALTRANSDUCTION
    Chentao Lin, Dror Shalitin
    Annual Review of Plant Biology 2003 54 1
  • A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2
    Salah El-Din El-Assal, Carlos Alonso-Blanco, Anton J.M. Peeters, Vered Raz, Maarten Koornneef
    Nature Genetics 2001 29 4
  • Cryptochrome Blue Light Photoreceptors Are Activated through Interconversion of Flavin Redox States
    Jean-Pierre Bouly, Erik Schleicher, Maribel Dionisio-Sese, Filip Vandenbussche, Dominique Van Der Straeten, Nadia Bakrim, Stefan Meier, Alfred Batschauer, Paul Galland, Robert Bittl, Margaret Ahmad
    Journal of Biological Chemistry 2007 282 13
  • Blue-Light Photoreceptors in Higher Plants
    Winslow R. Briggs, Eva Huala
    Annual Review of Cell and Developmental Biology 1999 15 1
  • The C Termini of Arabidopsis Cryptochromes Mediate a Constitutive Light Response
    Hong-Quan Yang, Ying-Jie Wu, Ru-Hang Tang, Dongmei Liu, Yan Liu, Anthony R Cashmore
    Cell 2000 103 5
  • From The Cover: A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening
    J. Mao, Y.-C. Zhang, Y. Sang, Q.-H. Li, H.-Q. Yang
    Proceedings of the National Academy of Sciences 2005 102 34
  • The CRY1 Blue Light Photoreceptor of Arabidopsis Interacts with Phytochrome A In Vitro
    Margaret Ahmad, Jose A. Jarillo, Olga Smirnova, Anthony R. Cashmore
    Molecular Cell 1998 1 7
  • The action mechanisms of plant cryptochromes
    Hongtao Liu, Bin Liu, Chenxi Zhao, Michael Pepper, Chentao Lin
    Trends in Plant Science 2011 16 12
  • Regulation of photoperiodic flowering by Arabidopsis photoreceptors
    T. Mockler, H. Yang, X. Yu, D. Parikh, Y.-c. Cheng, S. Dolan, C. Lin
    Proceedings of the National Academy of Sciences 2003 100 4
  • Auxin modulates the degradation rate of Aux/IAA proteins
    N. Zenser, A. Ellsmore, C. Leasure, J. Callis
    Proceedings of the National Academy of Sciences 2001 98 20
  • The Cryptochrome Blue Light Receptors
    Xuhong Yu, Hongtao Liu, John Klejnot, Chentao Lin
    The Arabidopsis Book 2010 8
  • Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis
    M. Ohgishi, K. Saji, K. Okada, T. Sakai
    Proceedings of the National Academy of Sciences 2004 101 8
  • Blue Light Sensing in Higher Plants
    John M. Christie, Winslow R. Briggs
    Journal of Biological Chemistry 2001 276 15
  • Light-induced Electron Transfer inArabidopsisCryptochrome-1 Correlates within VivoFunction
    Anke Zeugner, Martin Byrdin, Jean-Pierre Bouly, Nadia Bakrim, Baldissera Giovani, Klaus Brettel, Margaret Ahmad
    Journal of Biological Chemistry 2005 280 20
  • Cryptochrome blue-light photoreceptors of Arabidopsis implicated in phototropism
    Margaret Ahmad, Jose A. Jarillo, Olga Smirnova, Anthony R. Cashmore
    Nature 1998 392 6677
  • The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent post-transcriptional mechanism
    Hongwei Guo, Hien Duong, Nha Ma, Chentao Lin
    The Plant Journal 1999 19 3
  • Photochemistry and Photobiology of Cryptochrome Blue-light Photopigments: The Search for a Photocycle
    Carrie L. Partch, Aziz Sancar
    Photochemistry and Photobiology 2005 81 6
  • Association of the circadian rhythmic expression of GmCRY1a with a latitudinal cline in photoperiodic flowering of soybean
    Q. Zhang, H. Li, R. Li, R. Hu, C. Fan, F. Chen, Z. Wang, X. Liu, Y. Fu, C. Lin
    Proceedings of the National Academy of Sciences 2008 105 52
  • Cryptochrome 2 and phototropin 2 regulate resistance protein-mediated viral defense by negatively regulating an E3 ubiquitin ligase
    R.-D. Jeong, A. C. Chandra-Shekara, S. R. Barman, D. Navarre, D. F. Klessig, A. Kachroo, P. Kachroo
    Proceedings of the National Academy of Sciences 2010 107 30
  • Nuclear localization of the Arabidopsis blue light receptor cryptochrome 2
    Oliver Kleiner, Stefan Kircher, Klaus Harter, Alfred Batschauer
    The Plant Journal 1999 19 3
  • Shining a light on the Arabidopsis circadian clock
    Rachael J. Oakenfull, Seth J. Davis
    Plant, Cell & Environment 2017 40 11
  • LKP1 (LOV kelch protein 1): a factor involved in the regulation of flowering time in Arabidopsis
    Tomohiro Kiyosue, Masamitsu Wada
    The Plant Journal 2000 23 6
  • Involvement of Rice Cryptochromes in De-etiolation Responses and Flowering
    Fumiaki Hirose, Tomoko Shinomura, Takanari Tanabata, Hiroaki Shimada, Makoto Takano
    Plant and Cell Physiology 2006 47 7
  • Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana
    Bobin Liu, Zhaohe Yang, Adam Gomez, Bin Liu, Chentao Lin, Yoshito Oka
    Journal of Plant Research 2016 129 2
  • Seeing the world in red and blue: insight into plant vision and photoreceptors
    Margaret Ahmad
    Current Opinion in Plant Biology 1999 2 3
  • Day-Length Perception and the Photoperiodic Regulation of Flowering inArabidopsis
    Isabelle A. Carr
    Journal of Biological Rhythms 2001 16 4
  • Cryptochromes Orchestrate Transcription Regulation of Diverse Blue Light Responses in Plants
    Zhaohe Yang, Bobin Liu, Jun Su, Jiakai Liao, Chentao Lin, Yoshito Oka
    Photochemistry and Photobiology 2017 93 1
  • Lifetimes of Arabidopsis cryptochrome signaling statesin vivo
    Vera Herbel, Christian Orth, Ringo Wenzel, Margaret Ahmad, Robert Bittl, Alfred Batschauer
    The Plant Journal 2013 74 4
  • Photoreceptor Specificity in the Light-Induced and COP1-Mediated Rapid Degradation of the Repressor of Photomorphogenesis SPA2 in Arabidopsis
    Song Chen, Niels Lory, Johannes Stauber, Ute Hoecker, Roman Ulm
    PLOS Genetics 2015 11 9
  • Absorption and fluorescence spectroscopic characterisation of the circadian blue-light photoreceptor cryptochrome from Drosophila melanogaster (dCry)
    J. Shirdel, P. Zirak, A. Penzkofer, H. Breitkreuz, E. Wolf
    Chemical Physics 2008 352 1-3
  • Emerging Roles and New Paradigms in Signaling Mechanisms of Plant Cryptochromes
    Sushma Mishra, Jitendra P. Khurana
    Critical Reviews in Plant Sciences 2017 36 2
  • Tales from the Crypt(ochromes)
    Russell N. Van Gelder
    Journal of Biological Rhythms 2002 17 2
  • Functional interaction of cryptochrome 1 and phytochrome D
    Lars Hennig, Markus Funk, Garry C. Whitelam, Eberhard Schafer
    The Plant Journal 1999 20 3
  • Functional interaction of cryptochrome 1 and phytochrome D
    Lars Hennig, Markus Funk, Garry C. Whitelam, Eberhard Schafer
    The Plant Journal 1999 20 3
  • The shoot regeneration capacity of excised Arabidopsis cotyledons is established during the initial hours after injury and is modulated by a complex genetic network of light signalling
    BLAIR NAMETH, STEVEN J. DINKA, STEVEN P. CHATFIELD, ADAM MORRIS, JENNY ENGLISH, DORRETT LEWIS, ROSALINDA ORO, MANISH N. RAIZADA
    Plant, Cell & Environment 2013 36 1
  • Interactive signalling by phytochromes and cryptochromes generates de-etiolation homeostasis in Arabidopsis thaliana
    M. A. Mazzella, J. J. Casal
    Plant, Cell & Environment 2001 24 2
  • The blue light-induced interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light signaling
    Xu Holtkotte, Jathish Ponnu, Margaret Ahmad, Ute Hoecker, Christian Fankhauser
    PLOS Genetics 2017 13 10
  • Anthocyanin accumulation in the hypocotyl of an ABA-over producing male-sterile tomato (Lycopersicon esculentum) mutant
    Inder Singh Sheoran, Tim Dumonceaux, Raju Datla, Vipen K. Sawhney
    Physiologia Plantarum 2006 127 4
  • COP1 regulates plant growth and development in response to light at the post-translational level
    Joo Yong Kim, Jong Tae Song, Hak Soo Seo, Christine Raines
    Journal of Experimental Botany 2017 68 17
  • Tissue-specific regulation of flowering by photoreceptors
    Motomu Endo, Takashi Araki, Akira Nagatani
    Cellular and Molecular Life Sciences 2016 73 4
  • The cryptochrome—photolyase protein family in diatoms
    Sarah König, Matthias Juhas, Stefanie Jäger, Tilman Kottke, Claudia Büchel
    Journal of Plant Physiology 2017 217
  • Blue light photoreceptors are required for the stability and function of a resistance protein mediating viral defense in Arabidopsis
    Rae-Dong Jeong, Aardra Kachroo, Pradeep Kachroo
    Plant Signaling & Behavior 2010 5 11
  • Plant Productivity: Can Photoreceptors Light the Way?
    Eros Kharshiing, Shriravi Prasad Sinha
    Journal of Plant Growth Regulation 2015 34 1
  • Mutations in the N-terminal kinase-like domain of the repressor of photomorphogenesis SPA1 severely impair SPA1 function but not light responsiveness in Arabidopsis
    Xu Holtkotte, Stefan Dieterle, Leonie Kokkelink, Oliver Artz, Lisa Leson, Kirsten Fittinghoff, Ryosuke Hayama, Margaret Ahmad, Ute Hoecker
    The Plant Journal 2016 88 2
  • Active Oxygen Species in Blue Light Mediated Signal Transduction in Coleoptile Tips
    Manmohan M. Laloraya, Kumar Chandra-kuntal, G.Pradeep Kumar, Malini Laloraya
    Biochemical and Biophysical Research Communications 1999 256 2
  • The Blue Light-Dependent Polyubiquitination and Degradation of Arabidopsis Cryptochrome2 Requires Multiple E3 Ubiquitin Ligases
    Qing Liu, Qin Wang, Bin Liu, Wei Wang, Xu Wang, Joon Park, Zhenming Yang, Xinglin Du, Mingdi Bian, Chentao Lin
    Plant and Cell Physiology 2016 57 10
  • Light signaling and UV‐B‐mediated plant growth regulation
    Arpita Yadav, Deeksha Singh, Maneesh Lingwan, Premachandran Yadukrishnan, Shyam Kumar Masakapalli, Sourav Datta
    Journal of Integrative Plant Biology 2020 62 9
  • Molecular Evolution and Interaction of Membrane Transport and Photoreception in Plants
    Mohammad Babla, Shengguan Cai, Guang Chen, David T. Tissue, Christopher Ian Cazzonelli, Zhong-Hua Chen
    Frontiers in Genetics 2019 10
  • ATP boosts lit state formation and activity of Arabidopsis cryptochrome 2
    Maike Eckel, Wieland Steinchen, Alfred Batschauer
    The Plant Journal 2018 96 2
  • Unraveling multifaceted contributions of small regulatory RNAs to photomorphogenic development in Arabidopsis
    Meng-Chun Lin, Huang-Lung Tsai, Sim-Lin Lim, Shih-Tong Jeng, Shu-Hsing Wu
    BMC Genomics 2017 18 1
  • Common Functions of Disordered Proteins across Evolutionary Distant Organisms
    Arndt Wallmann, Christopher Kesten
    International Journal of Molecular Sciences 2020 21 6
  • Cryptochrome 1b from Sweet Sorghum Regulates Photoperiodic Flowering, Photomorphogenesis, and ABA Response in Transgenic Arabidopsis thaliana
    Tingting Zhou, Lianxia Zhou, Yue Ma, Jie Gao, Wenliang Li, Mingxin Piao, Baozhen Zeng, Zhenming Yang, Mingdi Bian
    Plant Molecular Biology Reporter 2018 36 1
  • OsBBX14 promotes photomorphogenesis in rice by activating OsHY5L1 expression under blue light conditions
    Bo Bai, Nannan Lu, Yaping Li, Shanli Guo, Haibo Yin, Yanan He, Wei Sun, Wen Li, Xianzhi Xie
    Plant Science 2019 284
  • Phototropism in land plants: Molecules and mechanism from light perception to response
    Johanna Morrow, Kyle T. Willenburg, Emmanuel Liscum
    Frontiers in Biology 2018 13 5
  • The oligomeric structures of plant cryptochromes
    Kai Shao, Xue Zhang, Xu Li, Yahui Hao, Xiaowei Huang, Miaolian Ma, Minhua Zhang, Fang Yu, Hongtao Liu, Peng Zhang
    Nature Structural & Molecular Biology 2020 27 5
  • Breeding For Ornamentals: Classical and Molecular Approaches
    A. Samach, M. Pineiro
    2002
  • Concepts in Photobiology
    Jitendra P. Khurana, Kenneth L. Poff
    1999
  • Light Regulates the RUBylation Levels of Individual Cullin Proteins in Arabidopsis thaliana
    Matthew J. Christians, Aron Rottier, Carly Wiersma
    Plant Molecular Biology Reporter 2018 36 1
  • The Influence of a Cryptochrome on the Gene Expression Profile in the Diatom Phaeodactylum tricornutum under Blue Light and in Darkness
    Sarah K�nig, Marion Eisenhut, Andrea Br�utigam, Samantha Kurz, Andreas P M Weber, Claudia B�chel
    Plant and Cell Physiology 2017 58 11
  • Regulation of flowering by green light depends on its photon flux density and involves cryptochromes
    Qingwu Meng, Erik S. Runkle
    Physiologia Plantarum 2019 166 3
  • Overexpression of blue light receptor AaCRY1 improves artemisinin content in Artemisia annua L. 
    Xueqing Fu, Yilong He, Ling Li, Limei Zhao, Yuting Wang, Hongmei Qian, Xiaofen Sun, Kexuan Tang, Jingya Zhao
    Biotechnology and Applied Biochemistry 2020
  • Annual Plant Reviews online
    Alfred Batschauer, Roopa Banerjee, Richard Pokorny
    2018
  • Annual Plant Reviews online
    Suhua Feng, Xing Wang Deng
    2018
  • Development
    Giorgio Morelli, Ida Ruberti
    1999
  • Light quality-dependent regulation of photoprotection and antioxidant properties in rice seedlings grown under different light-emitting diodes
    L.H. TRAN, D.G. LEE, S. JUNG
    Photosynthetica 2020
  • New Frontiers in Bryology
    Edward B. Tucker
    2004
  • Plant Growth and Development
    Lalit M. Srivastava
    2002
  • Role of Arabidopsis BBX proteins in light signaling
    Arpita Yadav, Nevedha Ravindran, Deeksha Singh, Puthan Valappil Rahul, Sourav Datta
    Journal of Plant Biochemistry and Biotechnology 2020 29 4
  • The Arabidopsis cryptochrome 2 I404F mutant is hypersensitive and shows flavin reduction even in the absence of light
    Galileo Estopare Araguirang, Nils Niemann, Stephan Kiontke, Maike Eckel, Maribel L. Dionisio-Sese, Alfred Batschauer
    Planta 2020 251 1

Article Information

vol. 10 no. 2 197-207
DOI 
https://doi.org/10.1105/tpc.10.2.197
PubMed 
9490743

Published By 
American Society of Plant Biologists
Print ISSN 
1040-4651
Online ISSN 
1532-298X
Published Online 
February 01, 1998

Copyright & Usage 
© 1998 American Society of Plant Physiologists

PreviousNext
Back to top

Table of Contents

Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Cell.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Chimeric Proteins between cry1 and cry2 Arabidopsis Blue Light Photoreceptors Indicate Overlapping Functions and Varying Protein Stability
(Your Name) has sent you a message from Plant Cell
(Your Name) thought you would like to see the Plant Cell web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Chimeric Proteins between cry1 and cry2 Arabidopsis Blue Light Photoreceptors Indicate Overlapping Functions and Varying Protein Stability
Margaret Ahmad, Jose A. Jarillo, Anthony R. Cashmore
The Plant Cell Feb 1998, 10 (2) 197-207; DOI: 10.1105/tpc.10.2.197

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Chimeric Proteins between cry1 and cry2 Arabidopsis Blue Light Photoreceptors Indicate Overlapping Functions and Varying Protein Stability
Margaret Ahmad, Jose A. Jarillo, Anthony R. Cashmore
The Plant Cell Feb 1998, 10 (2) 197-207; DOI: 10.1105/tpc.10.2.197
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • METHODS
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

In this issue

The Plant Cell Online: 10 (2)
The Plant Cell
Vol. 10, Issue 2
Feb 1998
  • Table of Contents
  • About the Cover
  • Index by author
View this article with LENS

More in this TOC Section

  • AUTOPHAGY-RELATED14 and Its Associated Phosphatidylinositol 3-Kinase Complex Promote Autophagy in Arabidopsis
  • Grass-Specific EPAD1 Is Essential for Pollen Exine Patterning in Rice
  • The Cotton Wall-Associated Kinase GhWAK7A Mediates Responses to Fungal Wilt Pathogens by Complexing with the Chitin Sensory Receptors
Show more RESEARCH ARTICLES

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Cell Preview
  • Archive
  • Teaching Tools in Plant Biology
  • Plant Physiology
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Peer Review Reports
  • Journal Miles
  • Transfer of reviews to Plant Direct
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds
  • Contact Us

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire