Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Cell
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Cell

Advanced Search

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Follow PlantCell on Twitter
  • Visit PlantCell on Facebook
  • Visit Plantae
Research ArticleResearch Article
You have accessRestricted Access

PAD4 Functions Upstream from Salicylic Acid to Control Defense Responses in Arabidopsis

Nan Zhou, Tina L. Tootle, Frank Tsui, Daniel F. Klessig, Jane Glazebrook
Nan Zhou
aCenter for Agricultural Biotechnology, University of Maryland Biotechnology Institute, College Park, Maryland 20742
bDepartment of Plant Biology, University of Maryland, College Park, Maryland 20742
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tina L. Tootle
aCenter for Agricultural Biotechnology, University of Maryland Biotechnology Institute, College Park, Maryland 20742
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Frank Tsui
cWaksman Institute, Rutgers The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, New Jersey 08854-8020
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniel F. Klessig
cWaksman Institute, Rutgers The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, New Jersey 08854-8020
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jane Glazebrook
aCenter for Agricultural Biotechnology, University of Maryland Biotechnology Institute, College Park, Maryland 20742
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: glazebro@umbi.umd.edu

Published June 1998. DOI: https://doi.org/10.1105/tpc.10.6.1021

  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading
  • © 1998 American Society of Plant Physiologists

Abstract

The Arabidopsis PAD4 gene was previously shown to be required for synthesis of camalexin in response to infection by the virulent bacterial pathogen Pseudomonas syringae pv maculicola ES4326 but not in response to challenge by the non-host fungal pathogen Cochliobolus carbonum. In this study, we show that pad4 mutants exhibit defects in defense responses, including camalexin synthesis and pathogenesis-related PR-1 gene expression, when infected by P. s. maculicola ES4326. No such defects were observed in response to infection by an isogenic avirulent strain carrying the avirulence gene avrRpt2. In P. s. maculicola ES4326–infected pad4 plants, synthesis of salicylic acid (SA) was found to be reduced and delayed when compared with SA synthesis in wild-type plants. Moreover, treatment of pad4 plants with SA partially reversed the camalexin deficiency and PR-1 gene expression phenotypes of P. s. maculicola ES4326–infected pad4 plants. These findings support the hypothesis that PAD4 acts upstream from SA accumulation in regulating defense response expression in plants infected with P. s. maculicola ES4326. A working model of the role of PAD4 in governing expression of defense responses is presented.

  • Received January 12, 1998.
  • Accepted April 14, 1998.
  • Published June 1, 1998.
View Full Text
PreviousNext
Back to top

Table of Contents

Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Cell.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
PAD4 Functions Upstream from Salicylic Acid to Control Defense Responses in Arabidopsis
(Your Name) has sent you a message from Plant Cell
(Your Name) thought you would like to see the Plant Cell web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
PAD4 Functions Upstream from Salicylic Acid to Control Defense Responses in Arabidopsis
Nan Zhou, Tina L. Tootle, Frank Tsui, Daniel F. Klessig, Jane Glazebrook
The Plant Cell Jun 1998, 10 (6) 1021-1030; DOI: 10.1105/tpc.10.6.1021

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
PAD4 Functions Upstream from Salicylic Acid to Control Defense Responses in Arabidopsis
Nan Zhou, Tina L. Tootle, Frank Tsui, Daniel F. Klessig, Jane Glazebrook
The Plant Cell Jun 1998, 10 (6) 1021-1030; DOI: 10.1105/tpc.10.6.1021
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • METHODS
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

In this issue

The Plant Cell Online: 10 (6)
The Plant Cell
Vol. 10, Issue 6
Jun 1998
  • Table of Contents
  • About the Cover
  • Index by author
View this article with LENS

More in this TOC Section

  • Chloroplast Chaperonin-Mediated Targeting of a Thylakoid Membrane Protein
  • Ectopic Expression of the Transcriptional Regulator silky3 Causes Pleiotropic Meristem and Sex Determination Defects in Maize Inflorescences
  • SAUR17 and SAUR50 Differentially Regulate PP2C-D1 during Apical Hook Development and Cotyledon Opening in Arabidopsis
Show more RESEARCH ARTICLES

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Cell Preview
  • Archive
  • Teaching Tools in Plant Biology
  • Plant Physiology
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Peer Review Reports
  • Journal Miles
  • Transfer of reviews to Plant Direct
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds
  • Contact Us

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire