Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Cell
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Cell

Advanced Search

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Follow PlantCell on Twitter
  • Visit PlantCell on Facebook
  • Visit Plantae
Research ArticleResearch Article
You have accessRestricted Access

IFL1, a Gene Regulating Interfascicular Fiber Differentiation in Arabidopsis, Encodes a Homeodomain-Leucine Zipper Protein

Ruiqin Zhong, Zheng-Hua Ye
Ruiqin Zhong
Department of Botany, University of Georgia, Athens, Georgia 30602
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Zheng-Hua Ye
Department of Botany, University of Georgia, Athens, Georgia 30602
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: ye@dogwood.botany.uga.edu

Published November 1999. DOI: https://doi.org/10.1105/tpc.11.11.2139

  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading
  • © 1999 American Society of Plant Physiologists

Abstract

Arabidopsis inflorescence stems develop extraxylary fibers at specific sites in interfascicular regions. The spatial specification of interfascicular fiber differentiation is regulated by the INTERFASCICULAR FIBERLESS1 (IFL1) gene because mutation of that gene abolishes the formation of normal interfascicular fibers in Arabidopsis stems. To understand further the role of IFL1 in the specification of fiber differentiation, we cloned the IFL1 gene by using a positional cloning strategy. Sequence analysis showed that the IFL1 gene encodes a transcription factor that has the same features as a family of homeodomain-leucine zipper (HD-ZIP) proteins found only in plants. The predicted IFL1 protein is composed of three distinct domains, including a 60-amino acid HD at the N terminus followed by a 28-amino acid ZIP motif and a 724-amino acid C-terminal region. A nuclear targeting assay showed that IFL1 is able to direct a β-glucuronidase fusion protein into the nucleus, which is consistent with IFL1's presumed function as a transcription factor. Gene expression analysis demonstrated that the IFL1 gene is expressed in the interfascicular regions in which fibers differentiate, which is consistent with its role in the control of interfascicular fiber differentiation. Furthermore, the IFL1 gene was shown to be expressed in the vascular regions, indicating its possible role in the regulation of vascular tissue formation. This possibility is supported by the observation that differentiation of both xylary fibers and vessel elements is altered in the vascular bundles of ifl1 mutants. Our results provide direct evidence that an HD-ZIP protein plays a role in the spatial control of fiber differentiation.

  • Received August 17, 1999.
  • Accepted September 15, 1999.
  • Published November 1, 1999.
View Full Text
PreviousNext
Back to top

Table of Contents

Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Cell.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
IFL1, a Gene Regulating Interfascicular Fiber Differentiation in Arabidopsis, Encodes a Homeodomain-Leucine Zipper Protein
(Your Name) has sent you a message from Plant Cell
(Your Name) thought you would like to see the Plant Cell web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
IFL1, a Gene Regulating Interfascicular Fiber Differentiation in Arabidopsis, Encodes a Homeodomain-Leucine Zipper Protein
Ruiqin Zhong, Zheng-Hua Ye
The Plant Cell Nov 1999, 11 (11) 2139-2152; DOI: 10.1105/tpc.11.11.2139

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
IFL1, a Gene Regulating Interfascicular Fiber Differentiation in Arabidopsis, Encodes a Homeodomain-Leucine Zipper Protein
Ruiqin Zhong, Zheng-Hua Ye
The Plant Cell Nov 1999, 11 (11) 2139-2152; DOI: 10.1105/tpc.11.11.2139
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • METHODS
    • Acknowledgments
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

In this issue

The Plant Cell Online: 11 (11)
The Plant Cell
Vol. 11, Issue 11
Nov 1999
  • Table of Contents
  • About the Cover
  • Index by author
View this article with LENS

More in this TOC Section

  • Chloroplast Chaperonin-Mediated Targeting of a Thylakoid Membrane Protein
  • Ectopic Expression of the Transcriptional Regulator silky3 Causes Pleiotropic Meristem and Sex Determination Defects in Maize Inflorescences
  • SAUR17 and SAUR50 Differentially Regulate PP2C-D1 during Apical Hook Development and Cotyledon Opening in Arabidopsis
Show more RESEARCH ARTICLES

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Cell Preview
  • Archive
  • Teaching Tools in Plant Biology
  • Plant Physiology
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Peer Review Reports
  • Journal Miles
  • Transfer of reviews to Plant Direct
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds
  • Contact Us

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire