Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Cell
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Cell

Advanced Search

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Follow PlantCell on Twitter
  • Visit PlantCell on Facebook
  • Visit Plantae
Research ArticleResearch Article
You have accessRestricted Access

Multicellular Compartmentation of Catharanthus roseus Alkaloid Biosynthesis Predicts Intercellular Translocation of a Pathway Intermediate

Benoit St-Pierre, Felipe A. Vazquez-Flota, Vincenzo De Luca
Benoit St-Pierre
Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, Québec H1X 2B2, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Felipe A. Vazquez-Flota
Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, Québec H1X 2B2, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vincenzo De Luca
Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, Québec H1X 2B2, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: vincenzo.de.luca@umontreal.ca

Published May 1999. DOI: https://doi.org/10.1105/tpc.11.5.887

  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading
  • © 1999 American Society of Plant Physiologists

Abstract

In situ RNA hybridization and immunocytochemistry were used to establish the cellular distribution of monoterpenoid indole alkaloid biosynthesis in Madagascar periwinkle (Catharanthus roseus). Tryptophan decarboxylase (TDC) and strictosidine synthase (STR1), which are involved in the biosynthesis of the central intermediate strictosidine, and desacetoxyvindoline 4-hydroxylase (D4H) and deacetylvindoline 4-O-acetyltransferase (DAT), which are involved in the terminal steps of vindoline biosynthesis, were localized. tdc and str1 mRNAs were present in the epidermis of stems, leaves, and flower buds, whereas they appeared in most protoderm and cortical cells around the apical meristem of root tips. In marked contrast, d4h and dat mRNAs were associated with the laticifer and idioblast cells of leaves, stems, and flower buds. Immunocytochemical localization for TDC, D4H, and DAT proteins confirmed the differential localization of early and late stages of vindoline biosynthesis. Therefore, we concluded that the elaboration of the major leaf alkaloids involves the participation of at least two cell types and requires the intercellular translocation of a pathway intermediate. A basipetal gradient of expression in maturing leaves also was shown for all four genes by in situ RNA hybridization studies and by complementary studies with dissected leaves, suggesting that expression of the vindoline pathway occurs transiently during early leaf development. These results partially explain why attempts to produce vindoline by cell culture technology have failed.

  • Received November 30, 1998.
  • Accepted March 9, 1999.
  • Published May 1, 1999.
View Full Text
PreviousNext
Back to top

Table of Contents

Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Cell.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Multicellular Compartmentation of Catharanthus roseus Alkaloid Biosynthesis Predicts Intercellular Translocation of a Pathway Intermediate
(Your Name) has sent you a message from Plant Cell
(Your Name) thought you would like to see the Plant Cell web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Multicellular Compartmentation of Catharanthus roseus Alkaloid Biosynthesis Predicts Intercellular Translocation of a Pathway Intermediate
Benoit St-Pierre, Felipe A. Vazquez-Flota, Vincenzo De Luca
The Plant Cell May 1999, 11 (5) 887-900; DOI: 10.1105/tpc.11.5.887

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Multicellular Compartmentation of Catharanthus roseus Alkaloid Biosynthesis Predicts Intercellular Translocation of a Pathway Intermediate
Benoit St-Pierre, Felipe A. Vazquez-Flota, Vincenzo De Luca
The Plant Cell May 1999, 11 (5) 887-900; DOI: 10.1105/tpc.11.5.887
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • METHODS
    • ACKNOWLEDGMENTS
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

In this issue

The Plant Cell Online: 11 (5)
The Plant Cell
Vol. 11, Issue 5
May 1999
  • Table of Contents
  • About the Cover
  • Index by author
View this article with LENS

More in this TOC Section

  • Ectopic Expression of the Transcriptional Regulator silky3 Causes Pleiotropic Meristem and Sex Determination Defects in Maize Inflorescences
  • SAUR17 and SAUR50 Differentially Regulate PP2C-D1 during Apical Hook Development and Cotyledon Opening in Arabidopsis
  • AUTOPHAGY-RELATED14 and Its Associated Phosphatidylinositol 3-Kinase Complex Promote Autophagy in Arabidopsis
Show more RESEARCH ARTICLES

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Cell Preview
  • Archive
  • Teaching Tools in Plant Biology
  • Plant Physiology
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Peer Review Reports
  • Journal Miles
  • Transfer of reviews to Plant Direct
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds
  • Contact Us

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire