Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Cell
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Cell

Advanced Search

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Follow PlantCell on Twitter
  • Visit PlantCell on Facebook
  • Visit Plantae
Research ArticleResearch Article
You have accessRestricted Access

The Arabidopsis Mutant cev1 Has Constitutively Active Jasmonate and Ethylene Signal Pathways and Enhanced Resistance to Pathogens

Christine Ellis, John G. Turner
Christine Ellis
School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John G. Turner
School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: j.g.turner@uea.ac.uk

Published May 2001. DOI: https://doi.org/10.1105/tpc.13.5.1025

  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading
  • © 2001 American Society of Plant Physiologists

Abstract

Jasmonates (JAs) inhibit plant growth and induce plant defense responses. To define genes in the Arabidopsis JA signal pathway, we screened for mutants with constitutive expression of a luciferase reporter for the JA-responsive promoter from the vegetative storage protein gene VSP1. One mutant, named constitutive expression of VSP1 (cev1), produced plants that were smaller than wild type, had stunted roots with long root hairs, accumulated anthocyanin, had constitutive expression of the defense-related genes VSP1, VSP2, Thi2.1, PDF1.2, and CHI-B, and had enhanced resistance to powdery mildew diseases. Genetic evidence indicated that the cev1 phenotype required both COI1, an essential component of the JA signal pathway, and ETR1, which encodes the ethylene receptor. We conclude that cev1 stimulates both the JA and the ethylene signal pathways and that CEV1 regulates an early step in an Arabidopsis defense pathway.

  • Received October 30, 2000.
  • Accepted March 9, 2001.
  • Published May 1, 2001.
View Full Text
PreviousNext
Back to top

Table of Contents

Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Cell.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The Arabidopsis Mutant cev1 Has Constitutively Active Jasmonate and Ethylene Signal Pathways and Enhanced Resistance to Pathogens
(Your Name) has sent you a message from Plant Cell
(Your Name) thought you would like to see the Plant Cell web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
The Arabidopsis Mutant cev1 Has Constitutively Active Jasmonate and Ethylene Signal Pathways and Enhanced Resistance to Pathogens
Christine Ellis, John G. Turner
The Plant Cell May 2001, 13 (5) 1025-1033; DOI: 10.1105/tpc.13.5.1025

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
The Arabidopsis Mutant cev1 Has Constitutively Active Jasmonate and Ethylene Signal Pathways and Enhanced Resistance to Pathogens
Christine Ellis, John G. Turner
The Plant Cell May 2001, 13 (5) 1025-1033; DOI: 10.1105/tpc.13.5.1025
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • METHODS
    • Acknowledgments
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

In this issue

The Plant Cell Online: 13 (5)
The Plant Cell
Vol. 13, Issue 5
May 2001
  • Table of Contents
  • About the Cover
  • Index by author
View this article with LENS

More in this TOC Section

  • SPIKE1 Activates the GTPase ROP6 to Guide the Polarized Growth of Infection Threads in Lotus japonicus
  • M-Type Thioredoxins Regulate the PGR5/PGRL1-Dependent Pathway by Forming a Disulfide-Linked Complex with PGRL1
  • Allelic Variation of MYB10 Is the Major Force Controlling Natural Variation in Skin and Flesh Color in Strawberry (Fragaria spp.) Fruit
Show more RESEARCH ARTICLES

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Cell Preview
  • Archive
  • Teaching Tools in Plant Biology
  • Plant Physiology
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Peer Review Reports
  • Journal Miles
  • Transfer of reviews to Plant Direct
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds
  • Contact Us

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire