Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Cell
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Cell

Advanced Search

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Follow PlantCell on Twitter
  • Visit PlantCell on Facebook
  • Visit Plantae
Research ArticleResearch Article
You have accessRestricted Access

Functional Analysis of Cyclin-Dependent Kinase Inhibitors of Arabidopsis

Lieven De Veylder, Tom Beeckman, Gerrit T.S. Beemster, Luc Krols, Franky Terras, Isabelle Landrieu, Els Van Der Schueren, Sara Maes, Mirande Naudts, Dirk Inzé
Lieven De Veylder
aVakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tom Beeckman
aVakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gerrit T.S. Beemster
aVakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Luc Krols
bCropDesign N.V., B-9052 Zwijnaarde, Belgium
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Franky Terras
bCropDesign N.V., B-9052 Zwijnaarde, Belgium
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Isabelle Landrieu
cInstitut de Biologie de Lille/Institut Pasteur de Lille, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8525, F-59019 Lille Cedex, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Els Van Der Schueren
aVakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sara Maes
aVakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mirande Naudts
aVakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dirk Inzé
aVakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published July 2001. DOI: https://doi.org/10.1105/TPC.010087

  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Article Figures & Data

Figures

  • Tables
  • Figure 1.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 1.

    Structural Organization of KRP1, KRP2, KRP3, KRP4, KRP5, KRP6, KRP7, and Chenopodium KRP.

    Conserved sequence boxes are indicated (1 to 6). N, nuclear localization signal; P, CDK consensus phosphorylation site; striped boxes, PEST domains. The predicted molecular masses (kD) are indicated at right.

  • Figure 2.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 2.

    In Vitro CDKA;1 Binding by KRP3.

    Protein extracts of 3-day-old cell suspensions of Arabidopsis were loaded onto a KRP3-Sepharose column, and bound and unbound fractions were tested for the presence of CDKA;1 or CDKB1;1 with specific antibodies.

  • Figure 3.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 3.

    Differential Expression of KRP Genes in Various Arabidopsis Organs and a 3-Day-Old Cell Suspension Culture.

    cDNA prepared from the indicated organs and the suspension cell culture were subjected to semiquantitative reverse transcriptase–mediated PCR analysis using gene-specific primers (see Methods). The actin 2 gene (ACT2) was used as a loading control.

  • Figure 4.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 4.

    KRP2 Inhibition of Advanced Mitosis in Yeast Caused by the CDKA;1.A14F15 Gene.

    (A) Wild-type fission yeast cells transformed with empty control vectors.

    (B) Yeast cells expressing the KRP2 gene.

    (C) Yeast cells expressing the dominant positive CDKA;1.A14F15 gene.

    (D) Yeast cells coexpressing the CDKA;1.A14F15 and KRP2 genes.

    (E) Protein gel blot analysis of protein levels of CDKA;1 and KRP2 in the cells from (A) to (D).

    Bars in (A) to (D) = 30 μm.

  • Figure 5.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 5.

    KRP2 Transgene Expression and CDK Histone H1 Activity in Untransformed and Four Independent Transgenic Arabidopsis Plants.

    (A) KRP2 mRNA levels.

    (B) KRP2 protein levels.

    (C) CDKA;1 protein levels.

    (D) Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) pro-tein levels visualized by Ponceau S staining (loading control).

    (E) CDK histone H1 activity bound to p10CKS1At beads.

    (F) Quantification of signals in (E).

  • Figure 6.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 6.

    Phenotypic Analysis of KRP2-Overproducing Lines.

    (A) Four-week-old soil-grown control plant. The inflorescence was removed to visualize the rosette leaves.

    (B) KRP2-overproducing plant with removed inflorescence.

    (C) Fifth leaf of a control plant grown in vitro.

    (D) Fifth leaf of a KRP2-overproducing plant.

    (E) Adaxial epidermal cells of the fifth leaf of a control plant.

    (F) Adaxial epidermal cells of a KRP2-overproducing plant.

    (G) Palisade cells of the fifth leaf of a control plant.

    (H) Palisade cells of a KRP2-overproducing plant.

    Bars in (A) and (B) = 2 mm; bars in (C) and (D) = 5 mm; bars in (E) to (H) = 50 μm.

  • Figure 7.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 7.

    Transverse Sections through the Central Part of the First Leaf.

    (A) Sixteen-day-old wild-type leaf grown in vitro.

    (B) Sixteen-day-old KRP2-overproducing leaf grown in vitro.

    Bar = 500 μm.

  • Figure 8.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 8.

    Kinematic Analysis of Leaf Growth of the First Leaf Pair of Wild-Type (Col-0) and KRP2-Overproducing (35S-KRP2) Plants.

    (A) Leaf blade area.

    (B) Epidermal cell number on the abaxial side of the leaf.

    (C) Average cell division rates of the epidermal cells on the abaxial side of the leaf.

    (D) Epidermal cell size on the abaxial side of the leaf.

  • Figure 9.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 9.

    Ploidy Distribution Diagrams of Leaves of Wild-Type (WT) and KRP2-Overexpressing Lines.

    Values are means of two independent measurements. Maximum differences found between two samples were 4.0, 3.0, and 2.0% for 2C, 4C, and 8C, respectively.

Tables

  • Figures
    • View popup
    Table 1.

    Conserved Motifs in the Plant KRPs

    ProteinMotif 1Motif 2Motif 3Motif 4Motif 5Motif 6
    KRP1180-PLEGRYEW167-FKKKYNFD151-EIEDFFVEAE20-YMQLRSRR
    KRP2197-LGGGRYEW183-CSMKYNFD164-ELEDFFQVAE
    KRP3210-PLSGRYEW197-FMEKYNFD181-EMEEFFAYAE58-YLQLRSRR26-SPGVRTRA1-MGKYMKKSK
    KRP4274-PLPGRFEW261-FIEKYNFD245-EMDEFFSGAE102-YLQLRSRR44-SLGVLTRA1-MGKYIRKSK
    KRP5177-PLPGRYEW164-FIQKYNFD148-EIEDFFASAE54-YLQLRSRR24-ALGFRTRA1-MGKYIKKSK
    KRP6186-PLEGRYKW173-FIEKYNFD155-EIEDLFSELE
    KRP7183-PLEGRYQW170-FTEKYNYD154-ELDDFFSAAE
    CDKI1a184-PLKGRYDW171-FSEKYNFD155-EIEEFFAVAE25-IPQLRSRR
    • a Chenopodium KRP.

    • View popup
    Table 2.

    Interaction of KRPs with CDKA;1, CDKB1;1, and CYCD4

    CDKA;1CDKB1;1CYCD4
    Prey/BaitaGAL-BDGAL-ADGAL-BDGAL-ADGAL-AD
    KRP1+−
    KRP2+−
    KRP3+−
    KRP4++−−+
    KRP5−−−−+
    KRP6−+−−+
    KRP7++−−+
    CKS1At++++−
    • ↵a Depending on the CDK-containing construct.

PreviousNext
Back to top

Table of Contents

Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Cell.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Functional Analysis of Cyclin-Dependent Kinase Inhibitors of Arabidopsis
(Your Name) has sent you a message from Plant Cell
(Your Name) thought you would like to see the Plant Cell web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Functional Analysis of Cyclin-Dependent Kinase Inhibitors of Arabidopsis
Lieven De Veylder, Tom Beeckman, Gerrit T.S. Beemster, Luc Krols, Franky Terras, Isabelle Landrieu, Els Van Der Schueren, Sara Maes, Mirande Naudts, Dirk Inzé
The Plant Cell Jul 2001, 13 (7) 1653-1668; DOI: 10.1105/TPC.010087

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Functional Analysis of Cyclin-Dependent Kinase Inhibitors of Arabidopsis
Lieven De Veylder, Tom Beeckman, Gerrit T.S. Beemster, Luc Krols, Franky Terras, Isabelle Landrieu, Els Van Der Schueren, Sara Maes, Mirande Naudts, Dirk Inzé
The Plant Cell Jul 2001, 13 (7) 1653-1668; DOI: 10.1105/TPC.010087
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • METHODS
    • Acknowledgments
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

In this issue

The Plant Cell Online: 13 (7)
The Plant Cell
Vol. 13, Issue 7
Jul 2001
  • Table of Contents
  • About the Cover
  • Index by author
View this article with LENS

More in this TOC Section

  • Regulation of Aluminum Resistance in Arabidopsis Involves the SUMOylation of the Zinc Finger Transcription Factor STOP1
  • Molecular Mechanism Underlying the Synergetic Effect of Jasmonate on Abscisic Acid Signaling during Seed Germination in Arabidopsis
  • Substrate Specificity of LACCASE8 Facilitates Polymerization of Caffeyl Alcohol for C-Lignin Biosynthesis in the Seed Coat of Cleome hassleriana
Show more RESEARCH ARTICLE

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Cell Preview
  • Archive
  • Teaching Tools in Plant Biology
  • Plant Physiology
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Peer Review Reports
  • Journal Miles
  • Transfer of reviews to Plant Direct
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds
  • Contact Us

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire