- American Society of Plant Biologists
Abstract
The maize mutation sh2-7527 was isolated in a conventional maize breeding program in the 1970s. Although the mutant contains foreign sequences within the gene, the mutation is not attributable to an interchromosomal exchange or to a chromosomal inversion. Hence, the mutation was caused by an insertion. Sequences at the two Sh2 borders have not been scrambled or mutated, suggesting that the insertion is not caused by a catastrophic reshuffling of the maize genome. The insertion is large, at least 12 kb, and is highly repetitive in maize. As judged by hybridization, sorghum contains only one or a few copies of the element, whereas no hybridization was seen to the Arabidopsis genome. The insertion acts from a distance to alter the splicing of the sh2 pre-mRNA. Three distinct intron-bearing maize genes were found in the insertion. Of most significance, the insertion bears striking similarity to the recently described DNA helicase–bearing transposable elements termed Helitrons. Like Helitrons, the inserted sequence of sh2-7527 is large, lacks terminal repeats, does not duplicate host sequences, and was inserted between a host dinucleotide AT. Like Helitrons, the maize element contains 5′ TC and 3′ CTRR termini as well as two short palindromic sequences near the 3′ terminus that potentially can form a 20-bp hairpin. Although the maize element lacks sequence information for a DNA helicase, it does contain four exons with similarity to a plant DEAD box RNA helicase. A second Helitron insertion was found in the maize genomic database. These data strongly suggest an active Helitron in the present-day maize genome.
- Received October 7, 2002.
- Accepted November 11, 2002.
- Published January 17, 2003.