Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Cell
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Cell

Advanced Search

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Follow PlantCell on Twitter
  • Visit PlantCell on Facebook
  • Visit Plantae
Research ArticleResearch Article
You have accessRestricted Access

Regulation of WUSCHEL Transcription in the Stem Cell Niche of the Arabidopsis Shoot Meristem

Isabel Bäurle, Thomas Laux
Isabel Bäurle
Institute of Biology III, Freiburg University, D-79104 Freiburg, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas Laux
Institute of Biology III, Freiburg University, D-79104 Freiburg, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published August 2005. DOI: https://doi.org/10.1105/tpc.105.032623

  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading
  • American Society of Plant Biologists

Abstract

Pluripotent stem cells are localized in specialized microenvironments, called stem cell niches, where signals from surrounding cells maintain their undifferentiated status. In the Arabidopsis thaliana shoot meristem, the homeobox gene WUSCHEL (WUS) is expressed in the organizing center underneath the stem cells and integrates regulatory information from several pathways to define the boundaries of the stem cell niche. To investigate how these boundaries are precisely maintained within the proliferating cellular context of the shoot meristem, we analyzed the transcriptional control of the WUS gene. Our results show that the WUS promoter contains distinct regulatory regions that control tissue specificity and levels of transcription in a combinatorial manner. However, a 57-bp regulatory region is all that is required to control the boundaries of WUS transcription in the shoot meristem stem cell niche, and this activity can be further assigned to two adjacent short sequence motifs within this region. Our results indicate that the diverse regulatory pathways that control the stem cells in the shoot meristem converge at these two short sequence elements of the WUS promoter, suggesting that the integration of regulatory signals takes place at the level of a central transactivating complex.

  • Received March 14, 2005.
  • Revised April 22, 2005.
  • Accepted May 13, 2005.
  • Published June 24, 2005.
View Full Text
PreviousNext
Back to top

Table of Contents

Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Cell.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Regulation of WUSCHEL Transcription in the Stem Cell Niche of the Arabidopsis Shoot Meristem
(Your Name) has sent you a message from Plant Cell
(Your Name) thought you would like to see the Plant Cell web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Regulation of WUSCHEL Transcription in the Stem Cell Niche of the Arabidopsis Shoot Meristem
Isabel Bäurle, Thomas Laux
The Plant Cell Aug 2005, 17 (8) 2271-2280; DOI: 10.1105/tpc.105.032623

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Regulation of WUSCHEL Transcription in the Stem Cell Niche of the Arabidopsis Shoot Meristem
Isabel Bäurle, Thomas Laux
The Plant Cell Aug 2005, 17 (8) 2271-2280; DOI: 10.1105/tpc.105.032623
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • METHODS
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

In this issue

The Plant Cell Online: 17 (8)
The Plant Cell
Vol. 17, Issue 8
August 2005
  • Table of Contents
  • About the Cover
  • Index by author
View this article with LENS

More in this TOC Section

  • AUTOPHAGY-RELATED14 and Its Associated Phosphatidylinositol 3-Kinase Complex Promote Autophagy in Arabidopsis
  • Grass-Specific EPAD1 Is Essential for Pollen Exine Patterning in Rice
  • The Cotton Wall-Associated Kinase GhWAK7A Mediates Responses to Fungal Wilt Pathogens by Complexing with the Chitin Sensory Receptors
Show more RESEARCH ARTICLES

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Cell Preview
  • Archive
  • Teaching Tools in Plant Biology
  • Plant Physiology
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Peer Review Reports
  • Journal Miles
  • Transfer of reviews to Plant Direct
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds
  • Contact Us

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire