Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Cell
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Cell

Advanced Search

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Follow PlantCell on Twitter
  • Visit PlantCell on Facebook
  • Visit Plantae
Research ArticleResearch Article
You have accessRestricted Access

UV-B Promotes Rapid Nuclear Translocation of the Arabidopsis UV-B–Specific Signaling Component UVR8 and Activates Its Function in the Nucleus

Eirini Kaiserli, Gareth I. Jenkins
Eirini Kaiserli
Plant Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gareth I. Jenkins
Plant Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published August 2007. DOI: https://doi.org/10.1105/tpc.107.053330

  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading
  • American Society of Plant Biologists

Abstract

Arabidopsis thaliana UV RESISTANCE LOCUS8 (UVR8) is a UV-B–specific signaling component that binds to chromatin and regulates UV protection by orchestrating expression of a range of genes. Here, we studied how UV-B regulates UVR8. We show that UV-B stimulates the nuclear accumulation of both a green fluorescent protein (GFP)-UVR8 fusion and native UVR8. Nuclear accumulation leads to UV-B induction of the HY5 gene, encoding a key transcriptional effector of the UVR8 pathway. Nuclear accumulation of UVR8 is specific to UV-B, occurs at low fluence rates, and is observed within 5 min of UV-B exposure. Attachment of a nuclear export signal (NES) to GFP-UVR8 causes cytosolic localization in the absence of UV-B. However, UV-B promotes rapid nuclear accumulation of NES-GFP-UVR8, indicating a concerted mechanism for nuclear translocation. UVR8 lacking the N-terminal 23 amino acids is impaired in nuclear translocation. Attachment of a nuclear localization signal (NLS) to UVR8 causes constitutive nuclear localization. However, NLS-GFP-UVR8 only confers HY5 gene expression following UV-B illumination, indicating that nuclear localization, although necessary for UVR8 function, is insufficient to cause expression of target genes; UV-B is additionally required to stimulate UVR8 function in the nucleus. These findings provide new insights into the mechanisms through which UV-B regulates gene expression in plants.

  • Received June 1, 2007.
  • Revised July 13, 2007.
  • Accepted August 9, 2007.
  • Published August 24, 2007.
View Full Text
PreviousNext
Back to top

Table of Contents

Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Cell.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
UV-B Promotes Rapid Nuclear Translocation of the Arabidopsis UV-B–Specific Signaling Component UVR8 and Activates Its Function in the Nucleus
(Your Name) has sent you a message from Plant Cell
(Your Name) thought you would like to see the Plant Cell web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
UV-B Promotes Rapid Nuclear Translocation of the Arabidopsis UV-B–Specific Signaling Component UVR8 and Activates Its Function in the Nucleus
Eirini Kaiserli, Gareth I. Jenkins
The Plant Cell Aug 2007, 19 (8) 2662-2673; DOI: 10.1105/tpc.107.053330

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
UV-B Promotes Rapid Nuclear Translocation of the Arabidopsis UV-B–Specific Signaling Component UVR8 and Activates Its Function in the Nucleus
Eirini Kaiserli, Gareth I. Jenkins
The Plant Cell Aug 2007, 19 (8) 2662-2673; DOI: 10.1105/tpc.107.053330
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • METHODS
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

In this issue

The Plant Cell Online: 19 (8)
The Plant Cell
Vol. 19, Issue 8
August 2007
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Front Matter (PDF)
View this article with LENS

More in this TOC Section

  • Ectopic Expression of the Transcriptional Regulator silky3 Causes Pleiotropic Meristem and Sex Determination Defects in Maize Inflorescences
  • SAUR17 and SAUR50 Differentially Regulate PP2C-D1 during Apical Hook Development and Cotyledon Opening in Arabidopsis
  • AUTOPHAGY-RELATED14 and Its Associated Phosphatidylinositol 3-Kinase Complex Promote Autophagy in Arabidopsis
Show more RESEARCH ARTICLES

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Cell Preview
  • Archive
  • Teaching Tools in Plant Biology
  • Plant Physiology
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Peer Review Reports
  • Journal Miles
  • Transfer of reviews to Plant Direct
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds
  • Contact Us

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire