Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Cell
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Cell

Advanced Search

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Follow PlantCell on Twitter
  • Visit PlantCell on Facebook
  • Visit Plantae
OtherResearch Article
You have accessRestricted Access

A Critical Role for the TIFY Motif in Repression of Jasmonate Signaling by a Stabilized Splice Variant of the JASMONATE ZIM-Domain Protein JAZ10 in Arabidopsis

Hoo Sun Chung, Gregg A. Howe
Hoo Sun Chung
aDepartment of Energy–Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
bDepartment of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gregg A. Howe
aDepartment of Energy–Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
bDepartment of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published January 2009. DOI: https://doi.org/10.1105/tpc.108.064097

  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading
  • American Society of Plant Biologists

Abstract

JASMONATE ZIM-domain (JAZ) proteins act as repressors of jasmonate (JA) signaling. Perception of bioactive JAs by the F-box protein CORONATINE INSENSITIVE1 (COI1) causes degradation of JAZs via the ubiquitin-proteasome pathway, which in turn activates the expression of genes involved in plant growth, development, and defense. JAZ proteins contain two highly conserved sequence regions: the Jas domain that interacts with COI1 to destabilize the repressor and the ZIM domain of unknown function. Here, we show that the conserved TIFY motif (TIFF/YXG) within the ZIM domain mediates homo- and heteromeric interactions between most Arabidopsis thaliana JAZs. We have also identified an alternatively spliced form (JAZ10.4) of JAZ10 that lacks the Jas domain and, as a consequence, is highly resistant to JA-induced degradation. Strong JA-insensitive phenotypes conferred by overexpression of JAZ10.4 were suppressed by mutations in the TIFY motif that block JAZ10.4–JAZ interactions. We conclude that JAZ10.4 functions to attenuate signal output in the presence of JA and further suggest that the dominant-negative action of this splice variant involves protein–protein interaction through the ZIM/TIFY domain. The ability of JAZ10.4 to interact with MYC2 is consistent with a model in which a JAZ10.4-containing protein complex directly represses the activity of transcription factors that promote expression of JA response genes.

  • Received October 29, 2008.
  • Revised December 22, 2008.
  • Accepted January 2, 2009.
  • Published January 16, 2009.
View Full Text
PreviousNext
Back to top

Table of Contents

Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Cell.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A Critical Role for the TIFY Motif in Repression of Jasmonate Signaling by a Stabilized Splice Variant of the JASMONATE ZIM-Domain Protein JAZ10 in Arabidopsis
(Your Name) has sent you a message from Plant Cell
(Your Name) thought you would like to see the Plant Cell web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
A Critical Role for the TIFY Motif in Repression of Jasmonate Signaling by a Stabilized Splice Variant of the JASMONATE ZIM-Domain Protein JAZ10 in Arabidopsis
Hoo Sun Chung, Gregg A. Howe
The Plant Cell Jan 2009, 21 (1) 131-145; DOI: 10.1105/tpc.108.064097

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
A Critical Role for the TIFY Motif in Repression of Jasmonate Signaling by a Stabilized Splice Variant of the JASMONATE ZIM-Domain Protein JAZ10 in Arabidopsis
Hoo Sun Chung, Gregg A. Howe
The Plant Cell Jan 2009, 21 (1) 131-145; DOI: 10.1105/tpc.108.064097
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • METHODS
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

In this issue

The Plant Cell Online: 21 (1)
The Plant Cell
Vol. 21, Issue 1
January 2009
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Front Matter (PDF)
View this article with LENS

More in this TOC Section

  • Temporal Regulation of the Metabolome and Proteome in Photosynthetic and Photorespiratory Pathways Contributes to Maize Heterosis
  • Chloroplast Chaperonin-Mediated Targeting of a Thylakoid Membrane Protein
  • Ectopic Expression of the Transcriptional Regulator silky3 Causes Pleiotropic Meristem and Sex Determination Defects in Maize Inflorescences
Show more RESEARCH ARTICLES

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Cell Preview
  • Archive
  • Teaching Tools in Plant Biology
  • Plant Physiology
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Peer Review Reports
  • Journal Miles
  • Transfer of reviews to Plant Direct
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds
  • Contact Us

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire