Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Cell
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Cell

Advanced Search

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Follow PlantCell on Twitter
  • Visit PlantCell on Facebook
  • Visit Plantae
Research ArticleLARGE-SCALE BIOLOGY ARTICLES
Open Access

Functional Network Construction in Arabidopsis Using Rule-Based Machine Learning on Large-Scale Data Sets

George W. Bassel, Enrico Glaab, Julietta Marquez, Michael J. Holdsworth, Jaume Bacardit
George W. Bassel
aDivision of Plant and Crop Sciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
bCentre for Plant Integrative Biology, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: george.bassel@nottingham.ac.uk
Enrico Glaab
cSchool of Computer Science, University of Nottingham, Nottingham, Nottinghamshire NG8 1BB, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Julietta Marquez
aDivision of Plant and Crop Sciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael J. Holdsworth
aDivision of Plant and Crop Sciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
bCentre for Plant Integrative Biology, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jaume Bacardit
dASAP Research Group, School of Computer Science, Nottingham NG8 1BB, United Kingdom
eMultidisciplinary Centre for Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published September 2011. DOI: https://doi.org/10.1105/tpc.111.088153

  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Statistics from Altmetric.com

Article usage

Article usage: September 2011 to January 2021

AbstractFullPdf
Sep 201125060429
Oct 2011141036276
Nov 20113506168306
Dec 201190179136
Jan 20124295488
Feb 20123753376
Mar 20123246189
Apr 20122653163
May 20122027859
Jun 20121697249
Jul 20121553342
Aug 20121342436
Sep 20121402745
Oct 20121783546
Nov 20121423865
Dec 20121241338
Jan 20131122941
Feb 20131252339
Mar 20131532030
Apr 20131542747
May 20131075846
Jun 2013811326
Jul 2013573117
Aug 2013642616
Sep 2013512017
Oct 2013952226
Nov 2013872128
Dec 2013961013
Jan 2014871616
Feb 20141052117
Mar 20141032535
Apr 2014793021
May 2014933313
Jun 2014491822
Jul 2014784818
Aug 2014442620
Sep 2014562014
Oct 2014742329
Nov 2014562415
Dec 2014522015
Jan 2015601916
Feb 2015511814
Mar 2015822523
Apr 2015552517
May 2015612321
Jun 2015492417
Jul 2015902931
Aug 2015363226
Sep 2015682320
Oct 2015761410
Nov 2015622111
Dec 2015912617
Jan 2016952922
Feb 2016753019
Mar 2016614243
Apr 2016552918
May 2016461710
Jun 2016732821
Jul 2016622824
Aug 2016431015
Sep 2016592410
Oct 2016861626
Nov 20161301014
Dec 20161311219
Jan 20171802512
Feb 20171751517
Mar 20171911419
Apr 20171701815
May 20171812310
Jun 2017475517
Jul 2017239016
Aug 20172011314
Sep 20173410820
Oct 20173822032
Nov 20172733331
Dec 20174115617
Jan 2018439632
Feb 20183616214
Mar 20184648038
Apr 20183419423
May 20183821125
Jun 20182516921
Jul 20182816027
Aug 20182413219
Sep 20183013314
Oct 20182420028
Nov 20181920820
Dec 20182423420
Jan 20192715512
Feb 20192516833
Mar 20192010222
Apr 20193017617
May 20192915625
Jun 2019106818
Jul 2019166822
Aug 20192417124
Sep 2019139117
Oct 20192216932
Nov 2019338522
Dec 20192610623
Jan 2020234927
Feb 20202624838
Mar 2020156125
Apr 2020158133
May 2020358532
Jun 2020109121
Jul 2020244339
Aug 202084817
Sep 2020346150
Oct 20202614148
Nov 20201210723
Dec 20201312725
Jan 2021413547

Author Information

  1. George W. Bassela,b,1,
  2. Enrico Glaabc,2,
  3. Julietta Marqueza,
  4. Michael J. Holdswortha,b,3 and
  5. Jaume Bacarditd,e,3
  1. aDivision of Plant and Crop Sciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
  2. bCentre for Plant Integrative Biology, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
  3. cSchool of Computer Science, University of Nottingham, Nottingham, Nottinghamshire NG8 1BB, United Kingdom
  4. dASAP Research Group, School of Computer Science, Nottingham NG8 1BB, United Kingdom
  5. eMultidisciplinary Centre for Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom
  1. ↵1Address correspondence to george.bassel{at}nottingham.ac.uk.
View Full Text

Cited By...

  • 65 Citations
  • 58 Citations
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Molecular mechanisms of seed dormancy
    KAI GRAEBER, KAZUMI NAKABAYASHI, EMMA MIATTON, GERHARD LEUBNER-METZGER, WIM J. J. SOPPE
    Plant, Cell & Environment 2012 35 10
  • Advances in Omics and Bioinformatics Tools for Systems Analyses of Plant Functions
    K. Mochida, K. Shinozaki
    Plant and Cell Physiology 2011 52 12
  • Towards revealing the functions of all genes in plants
    Seung Yon Rhee, Marek Mutwil
    Trends in Plant Science 2014 19 4
  • Seed-Development Programs: A Systems Biology–Based Comparison Between Dicots and Monocots
    Nese Sreenivasulu, Ulrich Wobus
    Annual Review of Plant Biology 2013 64 1
  • Machine learning for Big Data analytics in plants
    Chuang Ma, Hao Helen Zhang, Xiangfeng Wang
    Trends in Plant Science 2014 19 12
  • Application of Machine Learning to Proteomics Data: Classification and Biomarker Identification in Postgenomics Biology
    Anna Louise Swan, Ali Mobasheri, David Allaway, Susan Liddell, Jaume Bacardit
    OMICS: A Journal of Integrative Biology 2013 17 12
  • Understanding the molecular pathways associated with seed vigor
    Lorenzo Ventura, Mattia Donà, Anca Macovei, Daniela Carbonera, Armando Buttafava, Andrea Mondoni, Graziano Rossi, Alma Balestrazzi
    Plant Physiology and Biochemistry 2012 60
  • Large-Scale Phenomics Identifies Primary and Fine-Tuning Roles for CRKs in Responses Related to Oxidative Stress
    Gildas Bourdais, Paweł Burdiak, Adrien Gauthier, Lisette Nitsch, Jarkko Salojärvi, Channabasavangowda Rayapuram, Niina Idänheimo, Kerri Hunter, Sachie Kimura, Ebe Merilo, Aleksia Vaattovaara, Krystyna Oracz, David Kaufholdt, Andres Pallon, Damar Tri Anggoro, Dawid Glów, Jennifer Lowe, Ji Zhou, Omid Mohammadi, Tuomas Puukko, Andreas Albert, Hans Lang, Dieter Ernst, Hannes Kollist, Mikael Brosché, Jörg Durner, Jan Willem Borst, David B. Collinge, Stanisław Karpiński, Michael F. Lyngkjær, Silke Robatzek, Michael Wrzaczek, Jaakko Kangasjärvi, Nathan M. Springer
    PLOS Genetics 2015 11 7
  • Dynamic Proteomics Emphasizes the Importance of Selective mRNA Translation and Protein Turnover during Arabidopsis Seed Germination
    Marc Galland, Romain Huguet, Erwann Arc, Gwendal Cueff, Dominique Job, Loïc Rajjou
    Molecular & Cellular Proteomics 2014 13 1
  • Using Rule-Based Machine Learning for Candidate Disease Gene Prioritization and Sample Classification of Cancer Gene Expression Data
    Enrico Glaab, Jaume Bacardit, Jonathan M. Garibaldi, Natalio Krasnogor, Christos A. Ouzounis
    PLoS ONE 2012 7 7
  • Towards a better monitoring of seed ageing underex situseed conservation
    Yong-Bi Fu, Zaheer Ahmed, Axel Diederichsen
    Conservation Physiology 2015 3 1
  • Large-scale data mining using genetics-based machine learning
    Jaume Bacardit, Xavier Llorà
    Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2013 3 1
  • Phytohormones Signaling Pathways and ROS Involvement in Seed Germination
    Krystyna Oracz, Stanisław Karpiński
    Frontiers in Plant Science 2016 7
  • An innovative web-based collaborative platform for video annotation
    Isaak Kavasidis, Simone Palazzo, Roberto Di Salvo, Daniela Giordano, Concetto Spampinato
    Multimedia Tools and Applications 2014 70 1
  • Contact map prediction using a large-scale ensemble of rule sets and the fusion of multiple predicted structural features
    J. Bacardit, P. Widera, A. Marquez-Chamorro, F. Divina, J. S. Aguilar-Ruiz, N. Krasnogor
    Bioinformatics 2012 28 19
  • Massive-Scale Gene Co-Expression Network Construction and Robustness Testing Using Random Matrix Theory
    Scott M. Gibson, Stephen P. Ficklin, Sven Isaacson, Feng Luo, Frank A. Feltus, Melissa C. Smith, Ying Xu
    PLoS ONE 2013 8 2
  • A machine learning heuristic to identify biologically relevant and minimal biomarker panels from omics data
    Anna L Swan, Dov J Stekel, Charlie Hodgman, David Allaway, Mohammed H Alqahtani, Ali Mobasheri, Jaume Bacardit
    BMC Genomics 2015 16 Suppl 1
  • From plant gene regulatory grids to network dynamics
    Maria Katherine Mejia-Guerra, Marcelo Pomeranz, Kengo Morohashi, Erich Grotewold
    Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 2012 1819 5
  • Co-expression Gene Network Analysis and Functional Module Identification in Bamboo Growth and Development
    Xuelian Ma, Hansheng Zhao, Wenying Xu, Qi You, Hengyu Yan, Zhimin Gao, Zhen Su
    Frontiers in Genetics 2018 9
  • Translatome profiling in dormant and nondormant sunflower (Helianthus annuus) seeds highlights post-transcriptional regulation of germination
    Elodie Layat, Juliette Leymarie, Hayat El-Maarouf-Bouteau, José Caius, Nicolas Langlade, Christophe Bailly
    New Phytologist 2014 204 4
  • A combination of gene expression ranking and co-expression network analysis increases discovery rate in large-scale mutant screens for novelArabidopsis thalianaabiotic stress genes
    Vanessa Ransbotyn, Esti Yeger-Lotem, Omer Basha, Tania Acuna, Christoph Verduyn, Michal Gordon, Vered Chalifa-Caspi, Matthew A. Hannah, Simon Barak
    Plant Biotechnology Journal 2015 13 4
  • LASSO modeling of the Arabidopsis thaliana seed/seedling transcriptome: a model case for detection of novel mucilage and pectin metabolism genes
    Aleksandar Vasilevski, Federico M. Giorgi, Luca Bertinetti, Björn Usadel
    Molecular BioSystems 2012 8 10
  • Co-expression network analyses identify functional modules associated with development and stress response in Gossypium arboreum
    Qi You, Liwei Zhang, Xin Yi, Kang Zhang, Dongxia Yao, Xueyan Zhang, Qianhua Wang, Xinhua Zhao, Yi Ling, Wenying Xu, Fuguang Li, Zhen Su
    Scientific Reports 2016 6 1
  • Maximizing capture of gene co-expression relationships through pre-clustering of input expression samples: an Arabidopsis case study
    F Feltus, Stephen P Ficklin, Scott M Gibson, Melissa C Smith
    BMC Systems Biology 2013 7 1
  • Analysis of mass spectrometry data from the secretome of an explant model of articular cartilage exposed to pro-inflammatory and anti-inflammatory stimuli using machine learning
    Anna L Swan, Kirsty L Hillier, Julia R Smith, David Allaway, Susan Liddell, Jaume Bacardit, Ali Mobasheri
    BMC Musculoskeletal Disorders 2013 14 1
  • RiceAntherNet: a gene co‐expression network for identifying anther and pollen development genes
    Hong Lin, Jing Yu, Simon P. Pearce, Dabing Zhang, Zoe A. Wilson
    The Plant Journal 2017 92 6
  • A Systems-Genetics Approach and Data Mining Tool to Assist in the Discovery of Genes Underlying Complex Traits in Oryza sativa
    Stephen P. Ficklin, Frank Alex Feltus, Jinfa Zhang
    PLoS ONE 2013 8 7
  • Differentially expressed genes during the imbibition of dormant and after-ripened seeds – a reverse genetics approach
    Farzaneh Yazdanpanah, Johannes Hanson, Henk W.M. Hilhorst, Leónie Bentsink
    BMC Plant Biology 2017 17 1
  • Machine learning approaches and their current application in plant molecular biology: A systematic review
    Jose Cleydson F. Silva, Ruan M. Teixeira, Fabyano F. Silva, Sergio H. Brommonschenkel, Elizabeth P.B. Fontes
    Plant Science 2019 284
  • Reduced Neonatal Mortality in Meishan Piglets: A Role for Hepatic Fatty Acids?
    Hernan P. Fainberg, Katherine Bodley, Jaume Bacardit, Dongfang Li, Frank Wessely, Nigel P. Mongan, Michael E. Symonds, Lynne Clarke, Alison Mostyn, Julio Francisco Turrens
    PLoS ONE 2012 7 11
  • A survey of computational tools for downstream analysis of proteomic and other omic datasets
    Anis Karimpour-Fard, L. Elaine Epperson, Lawrence E. Hunter
    Human Genomics 2015 9 1
  • Hard Data Analytics Problems Make for Better Data Analysis Algorithms: Bioinformatics as an Example
    Jaume Bacardit, Paweł Widera, Nicola Lazzarini, Natalio Krasnogor
    Big Data 2014 2 3
  • Network types and their application in natural variation studies in plants
    José M. Jiménez-Gómez
    Current Opinion in Plant Biology 2014 18
  • Analysing BioHEL using challenging boolean functions
    María A. Franco, Natalio Krasnogor, Jaume Bacardit
    Evolutionary Intelligence 2012 5 2
  • Correlation of Aquaporins and Transmembrane Solute Transporters Revealed by Genome-Wide Analysis in Developing Maize Leaf
    Xun Yue, XiangYu Zhao, YuKui Fei, Xiansheng Zhang
    Comparative and Functional Genomics 2012 2012
  • GAssist vs. BioHEL: critical assessment of two paradigms of genetics-based machine learning
    María A. Franco, Natalio Krasnogor, Jaume Bacardit
    Soft Computing 2013 17 6
  • Integrating memetic search into the BioHEL evolutionary learning system for large-scale datasets
    Dan Andrei Calian, Jaume Bacardit
    Memetic Computing 2013 5 2
  • Metabolomics and Integrative Omics for the Development of Thai Traditional Medicine
    Sakda Khoomrung, Kwanjeera Wanichthanarak, Intawat Nookaew, Onusa Thamsermsang, Patcharamon Seubnooch, Tawee Laohapand, Pravit Akarasereenont
    Frontiers in Pharmacology 2017 8
  • Seed biology – from lab to field
    Steven Penfield
    Journal of Experimental Botany 2017 68 4
  • A novel wheat cysteine-rich receptor-like kinase gene CRK41 is involved in the regulation of seed germination under osmotic stress in Arabidopsis thaliana
    Donghua Chen, Jing Wu, Min Zhao, Xiaoyan Ma, Wei Zhang, Guangmin Xia, Mei Wang
    Journal of Plant Biology 2017 60 6
  • Functional networks and applications: A survey
    Guo Zhou, Yongquan Zhou, Huajuan Huang, Zhonghua Tang
    Neurocomputing 2019 335
  • Functional networks inference from rule-based machine learning models
    Nicola Lazzarini, Paweł Widera, Stuart Williamson, Rakesh Heer, Natalio Krasnogor, Jaume Bacardit
    BioData Mining 2016 9 1
  • Applications of Advanced Omics Technologies: From Genes to Metabolites
    Ana Conesa, Rafael Hernández
    2014 64
  • Feature set optimization in biomarker discovery from genome-scale data
    V Fortino, G Scala, D Greco, Anthony Mathelier
    Bioinformatics 2020 36 11
  • Social Media Types: introducing a data driven taxonomy
    Paraskevas Koukaras, Christos Tjortjis, Dimitrios Rousidis
    Computing 2020 102 1
  • Applications of Evolutionary Computation
    Simon Baron, Nicola Lazzarini, Jaume Bacardit
    2017 10199
  • Implementation and Use of Disease Diagnosis Systems for Electronic Medical Records Based on Machine Learning: A Complete Review
    Jahanzaib Latif, Chuangbai Xiao, Shanshan Tu, Sadaqat Ur Rehman, Azhar Imran, Anas Bilal
    IEEE Access 2020 8
  • Integrated Uncertainty in Knowledge Modelling and Decision Making
    Chukiat Chaiboonsri, Satawat Wannapan
    2019 11471
  • Integrating the Internet of Things Into Software Engineering Practices
    S. Kavitha, J. V. Anchitaalagammai, S. Nirmala, S. Murali
    2019
  • Methods in Biomedical Informatics
    Ryan J. Urbanowicz, Jason H. Moore
    2014
  • Alternative prediction methods in the stock exchanges of Thailand
    Kanchana Chokethaworn, Chukiat Chaiboonsri, Satawat Wannapan
    Journal of Physics: Conference Series 2019 1324
  • Automatic Tuning of Rule-Based Evolutionary Machine Learning via Problem Structure Identification
    Maria A. Franco, Natalio Krasnogor, Jaume Bacardit
    IEEE Computational Intelligence Magazine 2020 15 3
  • Customer satisfaction prediction with Michigan-style learning classifier system
    Keivan Borna, Shokoofeh Hoseini, Mohammad Ali Mehdi Aghaei
    SN Applied Sciences 2019 1 11
  • Gene locations may contribute to predicting gene regulatory relationships
    Jun Meng, Wen-yuan Xu, Xiao Chen, Tao Lin, Xiao-yu Deng
    Journal of Zhejiang University-SCIENCE B 2018 19 1
  • Plant Biology and Biotechnology
    Leonardo Henrique Ferreira Gomes, Marcelo Alves-Ferreira, Nicolas Carels
    2015
  • Research Anthology on Artificial Intelligence Applications in Security
    S. Kavitha, J. V. Anchitaalagammai, S. Nirmala, S. Murali
    2021
  • Susceptibility to experimental infection of the invertebrate locusts (Schistocerca gregaria) with the apicomplexan parasiteNeospora caninum
    Mamdowh M. Alkurashi, Sean T. May, Kenny Kong, Jaume Bacardit, David Haig, Hany M. Elsheikha
    PeerJ 2014 2
  • Verify and measure the quality of rule based machine leaning
    Honglei Wei, Hairui Jia, Yingfang Li, Yang Xu
    Knowledge-Based Systems 2020 205

Article Information

vol. 23 no. 9 3101-3116
DOI 
https://doi.org/10.1105/tpc.111.088153
PubMed 
21896882

Published By 
American Society of Plant Biologists
Print ISSN 
1040-4651
Online ISSN 
1532-298X
Published Online 
October 27, 2011

Article Versions

  • Older version (September 6, 2011 - 10:35).
  • You are viewing the most recent version of this article.
Copyright & Usage 
© 2011 American Society of Plant Biologists. All rights reserved. Open Access articles can be viewed online without a subscription.

PreviousNext
Back to top

Table of Contents

Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Cell.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Functional Network Construction in Arabidopsis Using Rule-Based Machine Learning on Large-Scale Data Sets
(Your Name) has sent you a message from Plant Cell
(Your Name) thought you would like to see the Plant Cell web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Functional Network Construction in Arabidopsis Using Rule-Based Machine Learning on Large-Scale Data Sets
George W. Bassel, Enrico Glaab, Julietta Marquez, Michael J. Holdsworth, Jaume Bacardit
The Plant Cell Sep 2011, 23 (9) 3101-3116; DOI: 10.1105/tpc.111.088153

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Functional Network Construction in Arabidopsis Using Rule-Based Machine Learning on Large-Scale Data Sets
George W. Bassel, Enrico Glaab, Julietta Marquez, Michael J. Holdsworth, Jaume Bacardit
The Plant Cell Sep 2011, 23 (9) 3101-3116; DOI: 10.1105/tpc.111.088153
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • RESULTS AND DISCUSSION
    • METHODS
    • Acknowledgments
    • AUTHOR CONTRIBUTIONS
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

In this issue

The Plant Cell Online: 23 (9)
The Plant Cell
Vol. 23, Issue 9
Sep 2011
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Front Matter (PDF)
View this article with LENS

More in this TOC Section

  • Alternative Crassulacean Acid Metabolism Modes Provide Environment-Specific Water-Saving Benefits in a Leaf Metabolic Model
  • ARADEEPOPSIS, an Automated Workflow for Top-View Plant Phenomics using Semantic Segmentation of Leaf States
  • Nonsense-Mediated RNA Decay Factor UPF1 Is Critical for Posttranscriptional and Translational Gene Regulation in Arabidopsis
Show more LARGE-SCALE BIOLOGY ARTICLES

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Cell Preview
  • Archive
  • Teaching Tools in Plant Biology
  • Plant Physiology
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Peer Review Reports
  • Journal Miles
  • Transfer of reviews to Plant Direct
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds
  • Contact Us

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire