Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • Info for
    • Instructions for Authors
    • Submit a Manuscript
    • Advertisers
    • Librarians
    • Subscribers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Cell
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Cell

Advanced Search

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • Info for
    • Instructions for Authors
    • Submit a Manuscript
    • Advertisers
    • Librarians
    • Subscribers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Follow PlantCell on Twitter
  • Visit PlantCell on Facebook
  • Visit Plantae
Research ArticleResearch Article
Open Access

Ectopic KNOX Expression Affects Plant Development by Altering Tissue Cell Polarity and Identity

Annis Richardson, Alexandra B. Rebocho, Enrico Coen
Annis Richardson
Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Annis Richardson
Alexandra B. Rebocho
Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Enrico Coen
Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Enrico Coen
  • For correspondence: enrico.coen@jic.ac.uk

Published September 2016. DOI: https://doi.org/10.1105/tpc.16.00284

  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading
  • © 2016 American Society of Plant Biologists. All rights reserved.

Abstract

Plant development involves two polarity types: tissue cell (asymmetries within cells are coordinated across tissues) and regional (identities vary spatially across tissues) polarity. Both appear altered in the barley (Hordeum vulgare) Hooded mutant, in which ectopic expression of the KNOTTED1-like Homeobox (KNOX) gene, BKn3, causes inverted polarity of differentiated hairs and ectopic flowers, in addition to wing-shaped outgrowths. These lemma-specific effects allow the spatiotemporal analysis of events following ectopic BKn3 expression, determining the relationship between KNOXs, polarity, and shape. We show that tissue cell polarity, based on localization of the auxin transporter SISTER OF PINFORMED1 (SoPIN1), dynamically reorients as ectopic BKn3 expression increases. Concurrently, ectopic expression of the auxin importer LIKE AUX1 and boundary gene NO APICAL MERISTEM is activated. The polarity of hairs reflects SoPIN1 patterns, suggesting that tissue cell polarity underpins oriented cell differentiation. Wing cell files reveal an anisotropic growth pattern, and computational modeling shows how polarity guiding growth can account for this pattern and wing emergence. The inverted ectopic flower orientation does not correlate with SoPIN1, suggesting that this form of regional polarity is not controlled by tissue cell polarity. Overall, the results suggest that KNOXs trigger different morphogenetic effects through interplay between tissue cell polarity, identity, and growth.

  • Glossary

    OPT
    optical projection tomography
    GPT
    growing polarized tissue
    PRN
    polarity regulatory network
    • Received April 11, 2016.
    • Revised July 5, 2016.
    • Accepted August 22, 2016.
    • Published August 23, 2016.

    View Full Text
    PreviousNext
    Back to top

    Table of Contents

    Print
    Download PDF
    Article Alerts
    Sign In to Email Alerts with your Email Address
    Email Article

    Thank you for your interest in spreading the word on Plant Cell.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Ectopic KNOX Expression Affects Plant Development by Altering Tissue Cell Polarity and Identity
    (Your Name) has sent you a message from Plant Cell
    (Your Name) thought you would like to see the Plant Cell web site.
    Citation Tools
    Ectopic KNOX Expression Affects Plant Development by Altering Tissue Cell Polarity and Identity
    Annis Richardson, Alexandra B. Rebocho, Enrico Coen
    The Plant Cell Sep 2016, 28 (9) 2079-2096; DOI: 10.1105/tpc.16.00284

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
    Request Permissions
    Share
    Ectopic KNOX Expression Affects Plant Development by Altering Tissue Cell Polarity and Identity
    Annis Richardson, Alexandra B. Rebocho, Enrico Coen
    The Plant Cell Sep 2016, 28 (9) 2079-2096; DOI: 10.1105/tpc.16.00284
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
    • Tweet Widget
    • Facebook Like
    • Google Plus One

    Jump to section

    • Article
      • Abstract
      • INTRODUCTION
      • RESULTS
      • DISCUSSION
      • METHODS
      • Acknowledgments
      • AUTHOR CONTRIBUTIONS
      • Footnotes
      • References
    • Figures & Data
    • Info & Metrics
    • PDF

    In this issue

    The Plant Cell: 28 (9)
    The Plant Cell
    Vol. 28, Issue 9
    Sep 2016
    • Table of Contents
    • Table of Contents (PDF)
    • Cover (PDF)
    • About the Cover
    • Index by author
    View this article with LENS

    More in this TOC Section

    • ORANGE Represses Chloroplast Biogenesis in Etiolated Arabidopsis Cotyledons via Interaction with TCP14
    • Secretion of Phospholipase Dδ Functions as a Regulatory Mechanism in Plant Innate Immunity
    • Genetic Analyses of the Arabidopsis ATG1 Kinase Complex Reveal Both Kinase-Dependent and Independent Autophagic Routes during Fixed-Carbon Starvation
    Show more RESEARCH ARTICLES

    Similar Articles

    Our Content

    • Home
    • Current Issue
    • Plant Cell Preview
    • Archive
    • Teaching Tools in Plant Biology
    • Plant Physiology
    • Plant Direct
    • Plantae
    • ASPB

    For Authors

    • Instructions
    • Submit a Manuscript
    • Editorial Board and Staff
    • Policies
    • Recognizing our Authors

    For Reviewers

    • Instructions
    • Peer Review Reports
    • Journal Miles
    • Transfer of reviews to Plant Direct
    • Policies

    Other Services

    • Permissions
    • Librarian resources
    • Advertise in our journals
    • Alerts
    • RSS Feeds
    • Contact Us

    Copyright © 2019 by The American Society of Plant Biologists

    Powered by HighWire