Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Cell
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Cell

Advanced Search

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Follow PlantCell on Twitter
  • Visit PlantCell on Facebook
  • Visit Plantae
Research ArticleResearch Article
You have accessRestricted Access

Ectopic Expression of the Transcriptional Regulator silky3 Causes Pleiotropic Meristem and Sex Determination Defects in Maize Inflorescences

Haishan Luo, Dexuan Meng, Hongbing Liu, Mujiao Xie, Changfa Yin, Fang Liu, Zhaobin Dong, Weiwei Jin
Haishan Luo
aState Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
bCenter for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Haishan Luo
Dexuan Meng
aState Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
cCollege of Agronomy, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Dexuan Meng
Hongbing Liu
aState Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
bCenter for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hongbing Liu
Mujiao Xie
aState Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Mujiao Xie
Changfa Yin
aState Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Changfa Yin
Fang Liu
bCenter for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Fang Liu
Zhaobin Dong
aState Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Zhaobin Dong
Weiwei Jin
aState Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
bCenter for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Weiwei Jin
  • For correspondence: weiweijin@cau.edu.cn

Published December 2020. DOI: https://doi.org/10.1105/tpc.20.00043

  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading
  • © 2020 American Society of Plant Biologists. All rights reserved.

Abstract

Maize (Zea mays) is a monoecious plant, in which inflorescence morphogenesis involves complicated molecular regulatory mechanisms. Although many related genes have been cloned, our understanding of the molecular mechanism underlying maize inflorescence development remains limited. Here, we identified a maize semi-dominant mutant Silky3 (Si3), which displays pleiotropic defects during inflorescence development, including loss of determinacy and identity in meristems and floral organs, as well as the sexual transformation of tassel florets. We cloned the si3 gene using a map-based approach. Functional analysis reveals that SI3 is a nuclear protein and may act as a transcriptional regulator. Transcriptome analysis reveals that the ectopic expression of si3 strongly represses multiple biological processes, especially the flower development pathways. RNA in situ hybridization similarly shows that the expression patterns of genes responsible for flower development are changed in the Si3 mutant. In addition, the homeostasis of jasmonic acid and gibberellic acid are altered in the Si3 young tassels, and application of exogenous jasmonic acid can rescue the sex reversal phenotype of Si3. The defects we characterized in various regulatory pathways can explain the complex phenotypes of Si3 mutant, and this study deepens our knowledge of maize inflorescence development.

  • Received January 17, 2020.
  • Revised September 4, 2020.
  • Accepted September 25, 2020.
  • Published September 28, 2020.
View Full Text

Log in using your username and password

Forgot your user name or password?

Pay Per Article - You may access this article (from the computer you are currently using) for 2 days for US$20.00

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

PreviousNext
Back to top

Table of Contents

Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Cell.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Ectopic Expression of the Transcriptional Regulator silky3 Causes Pleiotropic Meristem and Sex Determination Defects in Maize Inflorescences
(Your Name) has sent you a message from Plant Cell
(Your Name) thought you would like to see the Plant Cell web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Ectopic Expression of the Transcriptional Regulator silky3 Causes Pleiotropic Meristem and Sex Determination Defects in Maize Inflorescences
Haishan Luo, Dexuan Meng, Hongbing Liu, Mujiao Xie, Changfa Yin, Fang Liu, Zhaobin Dong, Weiwei Jin
The Plant Cell Dec 2020, 32 (12) 3750-3773; DOI: 10.1105/tpc.20.00043

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Ectopic Expression of the Transcriptional Regulator silky3 Causes Pleiotropic Meristem and Sex Determination Defects in Maize Inflorescences
Haishan Luo, Dexuan Meng, Hongbing Liu, Mujiao Xie, Changfa Yin, Fang Liu, Zhaobin Dong, Weiwei Jin
The Plant Cell Dec 2020, 32 (12) 3750-3773; DOI: 10.1105/tpc.20.00043
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • METHODS
    • DIVE Curated Terms
    • Acknowledgments
    • AUTHOR CONTRIBUTIONS
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

In this issue

The Plant Cell: 32 (12)
The Plant Cell
Vol. 32, Issue 12
Dec 2020
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
View this article with LENS

More in this TOC Section

  • SAUR17 and SAUR50 Differentially Regulate PP2C-D1 during Apical Hook Development and Cotyledon Opening in Arabidopsis
  • AUTOPHAGY-RELATED14 and Its Associated Phosphatidylinositol 3-Kinase Complex Promote Autophagy in Arabidopsis
Show more RESEARCH ARTICLES

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Cell Preview
  • Archive
  • Teaching Tools in Plant Biology
  • Plant Physiology
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Peer Review Reports
  • Journal Miles
  • Transfer of reviews to Plant Direct
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds
  • Contact Us

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire