Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Cell
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Cell

Advanced Search

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Follow PlantCell on Twitter
  • Visit PlantCell on Facebook
  • Visit Plantae
Abstract
You have accessRestricted Access

A maize protein associated with the G-box binding complex has homology to brain regulatory proteins.

N C de Vetten, G Lu, R J Feri
N C de Vetten
Horticultural Sciences Department, University of Florida, Gainesville 32611.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Lu
Horticultural Sciences Department, University of Florida, Gainesville 32611.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R J Feri
Horticultural Sciences Department, University of Florida, Gainesville 32611.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published October 1992. DOI: https://doi.org/10.1105/tpc.4.10.1295

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1992 by American Society of Plant Biologists

Abstract

The G-box element is a moderately conserved component of the promoter of many inducible genes, including the alcohol dehydrogenase genes of Arabidopsis and maize. We used monoclonal antibodies generated against partially purified G-box binding factor (GBF) activity to characterize maize proteins that are part of the DNA binding complex. Antibodies interacted with partially purified maize GBF complexes to produce a slower migrating complex in the gel retardation assay. Immunoprecipitation experiments suggested that the protein recognized by the antibody is not a DNA binding protein in and of itself, but rather is associated with the DNA binding complex. These monoclonal antibodies were used to isolate cDNA clones encoding a protein that we have designated GF14. Maize GF14 contains a region resembling a leucine zipper and acidic carboxy and amino termini, of which the latter can form an amphipathic alpha-helix similar to known transcriptional activators such as VP16 and GAL4. Protein gel blot analysis of cell culture extract showed that a single, major protein of approximately 30 kD is recognized by anti-GF14; the protein is also present predominantly in the kernel and root. The deduced amino acid sequence of maize GF14 is more than 80% identical to Arabidopsis GF14 and Oenothera PHP-O, and is more than 60% identical to a class of mammalian brain proteins described as both protein kinase C inhibitors and activators of tyrosine and tryptophan hydroxylases. GF14 is found in a variety of monocotyledons and dicotyledons, gymnosperms, and yeast. This suggests a deep evolutionary conservation of a potential regulatory protein associated with a core sequence found in the promoter region of many genes.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Cell.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A maize protein associated with the G-box binding complex has homology to brain regulatory proteins.
(Your Name) has sent you a message from Plant Cell
(Your Name) thought you would like to see the Plant Cell web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
A maize protein associated with the G-box binding complex has homology to brain regulatory proteins.
N C de Vetten, G Lu, R J Feri
The Plant Cell Oct 1992, 4 (10) 1295-1307; DOI: 10.1105/tpc.4.10.1295

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
A maize protein associated with the G-box binding complex has homology to brain regulatory proteins.
N C de Vetten, G Lu, R J Feri
The Plant Cell Oct 1992, 4 (10) 1295-1307; DOI: 10.1105/tpc.4.10.1295
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

The Plant Cell
Vol. 4, Issue 10
Oct 1992
  • Table of Contents
  • Index by author

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Cell Preview
  • Archive
  • Teaching Tools in Plant Biology
  • Plant Physiology
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Peer Review Reports
  • Journal Miles
  • Transfer of reviews to Plant Direct
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds
  • Contact Us

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire