Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • Info for
    • Instructions for Authors
    • Submit a Manuscript
    • Advertisers
    • Librarians
    • Subscribers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Cell
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Cell

Advanced Search

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • Info for
    • Instructions for Authors
    • Submit a Manuscript
    • Advertisers
    • Librarians
    • Subscribers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Follow PlantCell on Twitter
  • Visit PlantCell on Facebook
  • Visit Plantae
Abstract
You have accessRestricted Access

Tonoplast and Soluble Vacuolar Proteins Are Targeted by Different Mechanisms.

L. Gomez, M. J. Chrispeels
L. Gomez
Department of Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0116.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. J. Chrispeels
Department of Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0116.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published September 1993. DOI: https://doi.org/10.1105/tpc.5.9.1113

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1993 by American Society of Plant Biologists

Abstract

The delivery of proteins to the vacuole and its limiting membrane (the tonoplast) by the secretory system is thought to be a dissociative process in which vesicles bud from one compartment and fuse with another. We studied the transport kinetics of phytohemagglutinin (PHA) and tonoplast intrinsic protein (TIP) in mesophyll protoplasts obtained from transgenic tobacco plants transformed with genes encoding these two proteins. In pulse-chase experiments, arrival of PHA in the vacuole was found to be slower (completed 24 hr after synthesis) than the arrival of TIP in the tonoplast (completed 6 hr after synthesis). Brefeldin A and monensin block protein transport by interfering in specific vesicle transport steps. Brefeldin A prevents anterograde vesicle transport between the endoplasmic reticulum and the Golgi, whereas monensin inhibits correct sorting in the trans-Golgi network by disrupting the proton gradient across the membrane. Both inhibitors blocked the transport of PHA to the vacuole and altered the rate at which its complex glycan is processed by Golgi enzymes. Neither drug stopped the arrival of TIP in the tonoplast, suggesting that the flow of vesicles continues in the presence of these inhibitors. We suggest that soluble proteins like PHA and membrane proteins like TIP reach their vacuolar destinations by different paths.

PreviousNext
Back to top

Table of Contents

Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Plant Cell.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Tonoplast and Soluble Vacuolar Proteins Are Targeted by Different Mechanisms.
(Your Name) has sent you a message from Plant Cell
(Your Name) thought you would like to see the Plant Cell web site.
Citation Tools
Tonoplast and Soluble Vacuolar Proteins Are Targeted by Different Mechanisms.
L. Gomez, M. J. Chrispeels
The Plant Cell Sep 1993, 5 (9) 1113-1124; DOI: 10.1105/tpc.5.9.1113

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Tonoplast and Soluble Vacuolar Proteins Are Targeted by Different Mechanisms.
L. Gomez, M. J. Chrispeels
The Plant Cell Sep 1993, 5 (9) 1113-1124; DOI: 10.1105/tpc.5.9.1113
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

The Plant Cell
Vol. 5, Issue 9
Sep 1993
  • Table of Contents
  • Index by author

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Cell Preview
  • Archive
  • Teaching Tools in Plant Biology
  • Plant Physiology
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Peer Review Reports
  • Journal Miles
  • Transfer of reviews to Plant Direct
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds
  • Contact Us

Copyright © 2019 by The American Society of Plant Biologists

Powered by HighWire