Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Cell
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Cell

Advanced Search

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Follow PlantCell on Twitter
  • Visit PlantCell on Facebook
  • Visit Plantae
Abstract
You have accessRestricted Access

Overexpression of Arabidopsis COP1 results in partial suppression of light-mediated development: evidence for a light-inactivable repressor of photomorphogenesis.

T W McNellis, A G von Arnim, X W Deng
T W McNellis
Department of Biology, Yale University, New Haven, Connecticut 06520-8104.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A G von Arnim
Department of Biology, Yale University, New Haven, Connecticut 06520-8104.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
X W Deng
Department of Biology, Yale University, New Haven, Connecticut 06520-8104.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published October 1994. DOI: https://doi.org/10.1105/tpc.6.10.1391

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1994 by American Society of Plant Biologists

Abstract

Arabidopsis seedlings are genetically endowed with the capability to follow two distinct developmental programs: photomorphogenesis in the light and skotomorphogenesis in darkness. The regulatory protein CONSTITUTIVE PHOTO-MORPHOGENIC1 (COP1) has been postulated to act as a repressor of photomorphogenesis in the dark because loss-of-function mutations of COP1 result in dark-grown seedlings phenocopying the light-grown wild-type seedlings. In this study, we tested this working model by overexpressing COP1 in the plant and examining its inhibitory effects on photomorphogenic development. Stable transgenic Arabidopsis lines overexpressing COP1 were generated through Agrobacterium-mediated transformation. Overexpression was achieved using either the strong cauliflower mosaic virus 35S RNA promoter or additional copies of the wild-type gene. Analysis of these transgenic lines demonstrated that higher levels of COP1 can inhibit aspects of photomorphogenic seedling development mediated by either phytochromes or a blue light receptor, and the extent of inhibition correlated quantitatively with the vivo COP1 levels. This result provides direct evidence that COP1 acts as a molecular repressor of photomorphogenic development and that multiple photoreceptors can independently mediate the light inactivation of COP1. It also suggests that a controlled inactivation of COP1 may provide a basis for the ability of plants to respond quantitatively to changing light signals, such as fluence rate and photoperiod.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Cell.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Overexpression of Arabidopsis COP1 results in partial suppression of light-mediated development: evidence for a light-inactivable repressor of photomorphogenesis.
(Your Name) has sent you a message from Plant Cell
(Your Name) thought you would like to see the Plant Cell web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Overexpression of Arabidopsis COP1 results in partial suppression of light-mediated development: evidence for a light-inactivable repressor of photomorphogenesis.
T W McNellis, A G von Arnim, X W Deng
The Plant Cell Oct 1994, 6 (10) 1391-1400; DOI: 10.1105/tpc.6.10.1391

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Overexpression of Arabidopsis COP1 results in partial suppression of light-mediated development: evidence for a light-inactivable repressor of photomorphogenesis.
T W McNellis, A G von Arnim, X W Deng
The Plant Cell Oct 1994, 6 (10) 1391-1400; DOI: 10.1105/tpc.6.10.1391
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

The Plant Cell
Vol. 6, Issue 10
Oct 1994
  • Table of Contents
  • Index by author

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Cell Preview
  • Archive
  • Teaching Tools in Plant Biology
  • Plant Physiology
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Peer Review Reports
  • Journal Miles
  • Transfer of reviews to Plant Direct
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds
  • Contact Us

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire