Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Cell
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Cell

Advanced Search

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Follow PlantCell on Twitter
  • Visit PlantCell on Facebook
  • Visit Plantae
Abstract
You have accessRestricted Access

The barley stripe mosaic virus gamma b gene encodes a multifunctional cysteine-rich protein that affects pathogenesis.

R G Donald, A O Jackson
R G Donald
Department of Plant Biology, University of California, Berkeley 94720.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A O Jackson
Department of Plant Biology, University of California, Berkeley 94720.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published November 1994. DOI: https://doi.org/10.1105/tpc.6.11.1593

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1994 by American Society of Plant Biologists

Abstract

Barley stripe mosaic virus contains seven genes, one of which specifies a 17-kD cysteine-rich protein, gamma b, that is known to affect virulence. To further characterize the role of gamma b in pathogenesis, we mutagenized sequences encoding amino acids within two clusters of cysteine and histidine residues in the cysteine-rich domain and a group of basic amino acids located between the clusters and determined the effects of these mutations on the symptom phenotype in barley. Three single amino acid substitutions in cluster 1 and two amino acid exchanges in the basic region caused bleached symptoms associated with pronounced elevations in accumulation of gamma b protein. In contrast, three single amino acid substitutions in cluster 2 and a mutation in the basic motif resulted in attenuated ("null") symptoms typical of those produced when the gamma b gene is deleted. Tissue infected with these "null" mutants accumulated slightly elevated amounts of the gamma b protein but significantly lower levels of coat protein and the putative movement protein beta b. Genetic complementation tests revealed that cluster 1 mutations are dominant over the wild-type gamma b gene, whereas those in cluster 2 are recessive. These results highlight the pivotal role of gamma b in pathogenesis and suggest that the two cysteine-rich clusters are functionally distinct and that they affect different aspects of disease development.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Cell.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The barley stripe mosaic virus gamma b gene encodes a multifunctional cysteine-rich protein that affects pathogenesis.
(Your Name) has sent you a message from Plant Cell
(Your Name) thought you would like to see the Plant Cell web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
The barley stripe mosaic virus gamma b gene encodes a multifunctional cysteine-rich protein that affects pathogenesis.
R G Donald, A O Jackson
The Plant Cell Nov 1994, 6 (11) 1593-1606; DOI: 10.1105/tpc.6.11.1593

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
The barley stripe mosaic virus gamma b gene encodes a multifunctional cysteine-rich protein that affects pathogenesis.
R G Donald, A O Jackson
The Plant Cell Nov 1994, 6 (11) 1593-1606; DOI: 10.1105/tpc.6.11.1593
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

The Plant Cell
Vol. 6, Issue 11
Nov 1994
  • Table of Contents
  • Index by author

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Cell Preview
  • Archive
  • Teaching Tools in Plant Biology
  • Plant Physiology
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Peer Review Reports
  • Journal Miles
  • Transfer of reviews to Plant Direct
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds
  • Contact Us

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire