Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Cell
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Cell

Advanced Search

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Follow PlantCell on Twitter
  • Visit PlantCell on Facebook
  • Visit Plantae
Abstract
You have accessRestricted Access

Carbohydrate moiety of the Petunia inflata S3 protein is not required for self-incompatibility interactions between pollen and pistil.

B Karunanandaa, S Huang, T Kao
B Karunanandaa
Intercollege Graduate Program in Plant Physiology, Pennsylvania State University, University Park 16802.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Huang
Intercollege Graduate Program in Plant Physiology, Pennsylvania State University, University Park 16802.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T Kao
Intercollege Graduate Program in Plant Physiology, Pennsylvania State University, University Park 16802.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published December 1994. DOI: https://doi.org/10.1105/tpc.6.12.1933

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1994 by American Society of Plant Biologists

Abstract

For Petunia inflata and Nicotiana alata, which display gametophytic self-incompatibility, S proteins (the products of the multiallelic S gene in the pistil) have been shown to control the pistil's ability to recognize and reject self-pollen. The biochemical mechanism for rejection of self-pollen by S proteins has been shown to involve their ribonuclease activity; however, the molecular basis for self/non-self recognition by S proteins is not yet understood. Here, we addressed whether the glycan chain of the S3 protein of P. inflata is involved in self/non-self recognition by producing a nonglycosylated S3 protein in transgenic plants and examining the effect of deglycosylation on the ability of the S3 protein to reject S3 pollen. The S3 gene was mutagenized by replacing the codon for Asn-29, which is the only potential N-glycosylation site of the S3 protein, with a codon for Asp, and the mutant S3 gene was introduced into P. inflata plants of the S1S2 genotype. Six transgenic plants that produced a normal level of the nonglycosylated S3 protein acquired the ability to reject S3 pollen completely. These results suggest that the carbohydrate moiety of the S3 protein does not play a role in recognition or rejection of self-pollen and that the S allele specificity determinant of the S3 protein and those S proteins that contain a single glycan chain at the same site as the S3 protein must reside in the amino acid sequence itself.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Cell.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Carbohydrate moiety of the Petunia inflata S3 protein is not required for self-incompatibility interactions between pollen and pistil.
(Your Name) has sent you a message from Plant Cell
(Your Name) thought you would like to see the Plant Cell web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Carbohydrate moiety of the Petunia inflata S3 protein is not required for self-incompatibility interactions between pollen and pistil.
B Karunanandaa, S Huang, T Kao
The Plant Cell Dec 1994, 6 (12) 1933-1940; DOI: 10.1105/tpc.6.12.1933

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Carbohydrate moiety of the Petunia inflata S3 protein is not required for self-incompatibility interactions between pollen and pistil.
B Karunanandaa, S Huang, T Kao
The Plant Cell Dec 1994, 6 (12) 1933-1940; DOI: 10.1105/tpc.6.12.1933
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

The Plant Cell
Vol. 6, Issue 12
Dec 1994
  • Table of Contents
  • Index by author

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Cell Preview
  • Archive
  • Teaching Tools in Plant Biology
  • Plant Physiology
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Peer Review Reports
  • Journal Miles
  • Transfer of reviews to Plant Direct
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds
  • Contact Us

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire