Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Cell
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Cell

Advanced Search

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Follow PlantCell on Twitter
  • Visit PlantCell on Facebook
  • Visit Plantae
Abstract
You have accessRestricted Access

Gene Amplification Can Correct a Photosynthetic Growth Defect Caused by mRNA Instability in Chlamydomonas Chloroplasts.

K. L. Kindle, H. Suzuki, D. B. Stern
K. L. Kindle
Plant Science Center, Biotechnology Building, Cornell University, Ithaca, New York 14853.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. Suzuki
Plant Science Center, Biotechnology Building, Cornell University, Ithaca, New York 14853.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D. B. Stern
Plant Science Center, Biotechnology Building, Cornell University, Ithaca, New York 14853.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published February 1994. DOI: https://doi.org/10.1105/tpc.6.2.187

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1994 by American Society of Plant Biologists

Abstract

Chlamydomonas reinhardtii chloroplast transformants that lack an inverted repeat normally found at the 3[prime] end of the chloroplast atpB gene have a slow phototrophic growth phenotype due to reduced accumulation of atpB mRNA and the chloroplast ATPase [beta] subunit. We have recovered transformants exhibiting more robust phototrophic growth at a moderate frequency (~1% relative to slow-growing transformants). Quantitative DNA blot analysis indicated that in one class of these robust photosynthetic transformants, the introduced plasmid DNA is maintained at high copy number-~25 copies per chloroplast genome or 2000 copies per cell. Partial restriction digests resulted in a ladder with at least 15 visible fragments, indicating that most of the transforming DNA is organized as a long head-to-tail tandem repeat. Total atpB transcription and accumulation of atpB mRNA and the ATPase [beta] subunit were increased approximately fivefold relative to transformants that carry a single copy of the truncated atpB gene. The amplified DNA was stably maintained at high copy number under mixotrophic growth conditions. It was inherited uniparentally from the mt+ parent, and its synthesis was sensitive to 5-fluoro-2[prime]-deoxyuridine, an inhibitor of chloroplast DNA synthesis. Therefore, we conclude that the tandem repeat is maintained in the chloroplast. Restriction enzymes that fail to digest the transforming plasmid but have recognition sites in chloroplast DNA did not alter the electrophoretic mobility of the tandem repeat, suggesting that it is not integrated in the chloroplast genome. We conclude that the tandem repeat is probably episomal and hypothesize that its replication is independent of the chloroplast genome.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Cell.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Gene Amplification Can Correct a Photosynthetic Growth Defect Caused by mRNA Instability in Chlamydomonas Chloroplasts.
(Your Name) has sent you a message from Plant Cell
(Your Name) thought you would like to see the Plant Cell web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Gene Amplification Can Correct a Photosynthetic Growth Defect Caused by mRNA Instability in Chlamydomonas Chloroplasts.
K. L. Kindle, H. Suzuki, D. B. Stern
The Plant Cell Feb 1994, 6 (2) 187-200; DOI: 10.1105/tpc.6.2.187

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Gene Amplification Can Correct a Photosynthetic Growth Defect Caused by mRNA Instability in Chlamydomonas Chloroplasts.
K. L. Kindle, H. Suzuki, D. B. Stern
The Plant Cell Feb 1994, 6 (2) 187-200; DOI: 10.1105/tpc.6.2.187
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

The Plant Cell
Vol. 6, Issue 2
Feb 1994
  • Table of Contents
  • Index by author

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Cell Preview
  • Archive
  • Teaching Tools in Plant Biology
  • Plant Physiology
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Peer Review Reports
  • Journal Miles
  • Transfer of reviews to Plant Direct
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds
  • Contact Us

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire