Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Cell
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Cell

Advanced Search

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Follow PlantCell on Twitter
  • Visit PlantCell on Facebook
  • Visit Plantae
Abstract
You have accessRestricted Access

Dominant negative suppression of arabidopsis photoresponses by mutant phytochrome A sequences identifies spatially discrete regulatory domains in the photoreceptor.

M Boylan, N Douglas, P H Quail
M Boylan
University of California-Berkeley/U.S. Department of Agriculture, Plant Gene Expression Center, Albany 94710.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N Douglas
University of California-Berkeley/U.S. Department of Agriculture, Plant Gene Expression Center, Albany 94710.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P H Quail
University of California-Berkeley/U.S. Department of Agriculture, Plant Gene Expression Center, Albany 94710.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published March 1994. DOI: https://doi.org/10.1105/tpc.6.3.449

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1994 by American Society of Plant Biologists

Abstract

We used the exaggerated short hypocotyl phenotype induced by oat phytochrome A overexpression in transgenic Arabidopsis to monitor the biological activity of mutant phytochrome A derivatives. Three different mutations, which were generated by removing 52 amino acids from the N terminus (delta N52), the entire C-terminal domain (delta C617), or amino acids 617-686 (delta 617-686) of the oat molecule, each caused striking dominant negative interference with the ability of endogenous Arabidopsis phytochrome A to inhibit hypocotyl growth in continuous far-red light ("far-red high irradiance response" conditions). By contrast, in continuous white or red light, delta N52 was as active as the unmutagenized oat phytochrome A protein in suppressing hypocotyl elongation, while delta C617 and delta 617-686 continued to exhibit dominant negative behavior under these conditions. These data suggest that at least three spatially discrete molecular domains coordinate the photoregulatory activities of phytochrome A in Arabidopsis seedlings. The first is the chromophore-bearing N-terminal domain between residues 53 and 616 that is apparently sufficient for the light-induced initiation but not the completion of productive interactions with transduction chain components. The second is the C-terminal domain between residues 617 and 1129 that is apparently necessary for completion of productive interactions under all irradiation conditions. The third is the N-terminal 52 amino acids that are apparently necessary for completion of productive interactions only under far-red high irradiance conditions and are completely dispensable under white and red light regimes.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Cell.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Dominant negative suppression of arabidopsis photoresponses by mutant phytochrome A sequences identifies spatially discrete regulatory domains in the photoreceptor.
(Your Name) has sent you a message from Plant Cell
(Your Name) thought you would like to see the Plant Cell web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Dominant negative suppression of arabidopsis photoresponses by mutant phytochrome A sequences identifies spatially discrete regulatory domains in the photoreceptor.
M Boylan, N Douglas, P H Quail
The Plant Cell Mar 1994, 6 (3) 449-460; DOI: 10.1105/tpc.6.3.449

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Dominant negative suppression of arabidopsis photoresponses by mutant phytochrome A sequences identifies spatially discrete regulatory domains in the photoreceptor.
M Boylan, N Douglas, P H Quail
The Plant Cell Mar 1994, 6 (3) 449-460; DOI: 10.1105/tpc.6.3.449
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

The Plant Cell
Vol. 6, Issue 3
Mar 1994
  • Table of Contents
  • Index by author

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Cell Preview
  • Archive
  • Teaching Tools in Plant Biology
  • Plant Physiology
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Peer Review Reports
  • Journal Miles
  • Transfer of reviews to Plant Direct
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds
  • Contact Us

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire