Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Cell
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Cell

Advanced Search

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Follow PlantCell on Twitter
  • Visit PlantCell on Facebook
  • Visit Plantae
Abstract
You have accessRestricted Access

The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea.

T K Mitchell, R A Dean
T K Mitchell
Department of Plant Pathology and Physiology, Clemson University, South Carolina 29634, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R A Dean
Department of Plant Pathology and Physiology, Clemson University, South Carolina 29634, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published November 1995. DOI: https://doi.org/10.1105/tpc.7.11.1869

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1995 by American Society of Plant Biologists

Abstract

Magnaporthe grisea, the causal agent of rice blast disease, differentiates a specialized infection cell, an appressorium, that is required for infection of its host. Previously, cAMP was implicated in the endogenous signaling pathway leading to appressorium formation. To obtain direct evidence for the role of cAMP in appressorium formation, the gene encoding the catalytic subunit of the cAMP-dependent protein kinase (cpkA) was cloned, sequenced, and disrupted. Polymerase chain reaction primers designed after highly conserved regions in the same gene from other organisms were used to amplify genomic DNA fragments. The cloned amplification products were used to identify genomic clones. DNA blot analysis indicated that cpkA is present as a single copy in the genome. cpkA consists of 1894 bp, including three short introns sufficient to encode a protein of 539 amino acids with a predicted molecular mass of 60.7 kD. The deduced peptide shares > 45% identity with other catalytic subunits and contains all functional motifs and residues with the addition of a glutamine-rich region at the N terminus. Two transformants, L5 and T-182, in which cpkA had been replaced with a hygromycin resistance gene cassette, were unable to produce appressoria, could not be induced to form appressoria by cAMP, and were nonpathogenic on susceptible rice, even when leaves were abraded. These results were confirmed by analysis of 57 progeny from a cross between transformant L5 and the wild-type laboratory strain 70-6. Other aspects of growth and development, including vegetative growth as well as asexual and sexual competence, were unaffected when measured in vitro. These results provide direct evidence that the cAMP-dependent protein kinase is necessary for infection-related morphogenesis and pathogenesis in a phytopathogenic fungus.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Cell.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea.
(Your Name) has sent you a message from Plant Cell
(Your Name) thought you would like to see the Plant Cell web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea.
T K Mitchell, R A Dean
The Plant Cell Nov 1995, 7 (11) 1869-1878; DOI: 10.1105/tpc.7.11.1869

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea.
T K Mitchell, R A Dean
The Plant Cell Nov 1995, 7 (11) 1869-1878; DOI: 10.1105/tpc.7.11.1869
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

The Plant Cell
Vol. 7, Issue 11
Nov 1995
  • Table of Contents
  • Index by author

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Cell Preview
  • Archive
  • Teaching Tools in Plant Biology
  • Plant Physiology
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Peer Review Reports
  • Journal Miles
  • Transfer of reviews to Plant Direct
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds
  • Contact Us

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire