Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Cell
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Cell

Advanced Search

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Follow PlantCell on Twitter
  • Visit PlantCell on Facebook
  • Visit Plantae
Abstract
You have accessRestricted Access

An anther-specific gene encoded by an S locus haplotype of Brassica produces complementary and differentially regulated transcripts.

D C Boyes, J B Nasrallah
D C Boyes
Section of Plant Biology, Cornell University, Ithaca, New York 14853-5908, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J B Nasrallah
Section of Plant Biology, Cornell University, Ithaca, New York 14853-5908, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published August 1995. DOI: https://doi.org/10.1105/tpc.7.8.1283

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1995 by American Society of Plant Biologists

Abstract

The self-incompatibility locus of Brassica consists of a coadapted gene complex that contains at least two genes required for the recognition and inhibition of pollen by the stigma when self-pollinated. Here, we report the identification of a third S locus-linked gene from the S2 haplotype of Brassica oleracea. This gene, which we designated SLA (for S Locus Anther), is a novel gene with an unusual structure. SLA is transcribed from two promoters to produce two complementary anther-specific transcripts, one spliced and the other unspliced, that accumulate in an antiparallel manner in developing microspores and anthers. The sequence of the spliced transcript showed the presence of two open reading frames that predict proteins of 10 and 7.5 kD. Neither transcript was produced in a self-compatible B. napus strain carrying an S2-like haplotype, indicating that the SLA gene in this strain is nonfunctional. Interestingly, sequences related to SLA were not detected in DNA or RNA from plants carrying S haplotypes other than S2. The haplotype specificity of SLA, its anther-specific expression, and its physical linkage to the S locus are properties expected for a gene that encodes a determinant of S2 specificity in pollen.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Cell.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
An anther-specific gene encoded by an S locus haplotype of Brassica produces complementary and differentially regulated transcripts.
(Your Name) has sent you a message from Plant Cell
(Your Name) thought you would like to see the Plant Cell web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
An anther-specific gene encoded by an S locus haplotype of Brassica produces complementary and differentially regulated transcripts.
D C Boyes, J B Nasrallah
The Plant Cell Aug 1995, 7 (8) 1283-1294; DOI: 10.1105/tpc.7.8.1283

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
An anther-specific gene encoded by an S locus haplotype of Brassica produces complementary and differentially regulated transcripts.
D C Boyes, J B Nasrallah
The Plant Cell Aug 1995, 7 (8) 1283-1294; DOI: 10.1105/tpc.7.8.1283
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

The Plant Cell
Vol. 7, Issue 8
Aug 1995
  • Table of Contents
  • Index by author

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Cell Preview
  • Archive
  • Teaching Tools in Plant Biology
  • Plant Physiology
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Peer Review Reports
  • Journal Miles
  • Transfer of reviews to Plant Direct
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds
  • Contact Us

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire