Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Cell
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Cell

Advanced Search

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Follow PlantCell on Twitter
  • Visit PlantCell on Facebook
  • Visit Plantae
Abstract
You have accessRestricted Access

CHL1 encodes a component of the low-affinity nitrate uptake system in Arabidopsis and shows cell type-specific expression in roots.

N C Huang, C S Chiang, N M Crawford, Y F Tsay
N C Huang
Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C S Chiang
Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N M Crawford
Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y F Tsay
Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published December 1996. DOI: https://doi.org/10.1105/tpc.8.12.2183

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1996 by American Society of Plant Biologists

Abstract

The Arabidopsis CHL1 (AtNRT1) gene confers sensitivity to the herbicide chlorate and encodes a nitrate-regulated nitrate transporter. However, how CHL1 participates in nitrate uptake in plants is not yet clear. In this study, we examined the in vivo function of CHL1 with in vivo uptake measurements and in situ hybridization experiments. Under most conditions tested, the amount of nitrate uptake by a chl1 deletion mutant was found to be significantly less than that of the wild type. This uptake deficiency was reversed when a CHL1 cDNA clone driven by the cauliflower mosaic virus 35S promoter was expressed in transgenic chl1 plants. Furthermore, tissue-specific expression patterns showed that near the root tip, CHL1 mRNA is found primarily in the epidermis, but further from the root tip, the mRNA is found in the cortex or endodermis. These results are consistent with the involvement of CHL1 in nitrate uptake at different stages of root cell development. A functional analysis in Xenopus oocytes indicated that CHL1 is a low-affinity nitrate transporter with a K(m) value of approximately 8.5 mM for nitrate. This finding is consistent with the chlorate resistance phenotype of chl1 mutants. However, these results do not fit the current model of a single, constitutive component for the low-affinity uptake system. To reconcile this discrepancy and the complex uptake behavior observed, we propose a "two-gene" model for the low-affinity nitrate uptake system of Arabidopsis.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Cell.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
CHL1 encodes a component of the low-affinity nitrate uptake system in Arabidopsis and shows cell type-specific expression in roots.
(Your Name) has sent you a message from Plant Cell
(Your Name) thought you would like to see the Plant Cell web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
CHL1 encodes a component of the low-affinity nitrate uptake system in Arabidopsis and shows cell type-specific expression in roots.
N C Huang, C S Chiang, N M Crawford, Y F Tsay
The Plant Cell Dec 1996, 8 (12) 2183-2191; DOI: 10.1105/tpc.8.12.2183

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
CHL1 encodes a component of the low-affinity nitrate uptake system in Arabidopsis and shows cell type-specific expression in roots.
N C Huang, C S Chiang, N M Crawford, Y F Tsay
The Plant Cell Dec 1996, 8 (12) 2183-2191; DOI: 10.1105/tpc.8.12.2183
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

The Plant Cell
Vol. 8, Issue 12
Dec 1996
  • Table of Contents
  • Index by author

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Cell Preview
  • Archive
  • Teaching Tools in Plant Biology
  • Plant Physiology
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Peer Review Reports
  • Journal Miles
  • Transfer of reviews to Plant Direct
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds
  • Contact Us

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire