Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Cell
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Cell

Advanced Search

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Follow PlantCell on Twitter
  • Visit PlantCell on Facebook
  • Visit Plantae
Abstract
You have accessRestricted Access

Signal Transduction in Barley Aleurone Protoplasts Is Calcium Dependent and Independent.

S. Gilroy
S. Gilroy
Biology Department, Pennsylvania State University, 208 Mueller Laboratory, University Park, Pennsylvania 16802.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published December 1996. DOI: https://doi.org/10.1105/tpc.8.12.2193

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1996 by American Society of Plant Biologists

Abstract

Gibberellic acid (GA) increases Ca2+ and calmodulin (CaM) levels in barley aleurone cells, and abscisic acid (ABA) antagonizes the GA effect. These alterations in cytoplasmic Ca2+ and CaM have been suggested to be central regulators of the secretory response of the barley aleurone. Using microinjection of caged Ca2+, Ca2+ chelators, and CaM, we mimicked or blocked these hormonally induced changes in Ca2+ and CaM and assessed their effects on GA and ABA action. Although mimicking GA-induced changes in Ca2+ and CaM did not mimic GA action, blocking these changes did prevent GA stimulation of secretion. The induction of the amylase gene by GA was, however, unaffected. Similarly, blocking the decrease in Ca2+ normally caused by ABA in these cells blocked ABA action, except that induction of Em gene transcription by ABA was unaffected. These results suggest that GA and ABA signals are transduced by Ca2+- and CaM-dependent and Ca2+- and CaM-independent systems in the aleurone cell.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Cell.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Signal Transduction in Barley Aleurone Protoplasts Is Calcium Dependent and Independent.
(Your Name) has sent you a message from Plant Cell
(Your Name) thought you would like to see the Plant Cell web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Signal Transduction in Barley Aleurone Protoplasts Is Calcium Dependent and Independent.
S. Gilroy
The Plant Cell Dec 1996, 8 (12) 2193-2209; DOI: 10.1105/tpc.8.12.2193

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Signal Transduction in Barley Aleurone Protoplasts Is Calcium Dependent and Independent.
S. Gilroy
The Plant Cell Dec 1996, 8 (12) 2193-2209; DOI: 10.1105/tpc.8.12.2193
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

The Plant Cell
Vol. 8, Issue 12
Dec 1996
  • Table of Contents
  • Index by author

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Cell Preview
  • Archive
  • Teaching Tools in Plant Biology
  • Plant Physiology
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Peer Review Reports
  • Journal Miles
  • Transfer of reviews to Plant Direct
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds
  • Contact Us

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire