Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Cell
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Cell

Advanced Search

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Follow PlantCell on Twitter
  • Visit PlantCell on Facebook
  • Visit Plantae
Abstract
You have accessRestricted Access

Evolution of floral scent in Clarkia: novel patterns of S-linalool synthase gene expression in the C. breweri flower.

N Dudareva, L Cseke, V M Blanc, E Pichersky
N Dudareva
Biology Department, University of Michigan, Ann Arbor 48109, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L Cseke
Biology Department, University of Michigan, Ann Arbor 48109, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V M Blanc
Biology Department, University of Michigan, Ann Arbor 48109, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E Pichersky
Biology Department, University of Michigan, Ann Arbor 48109, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published July 1996. DOI: https://doi.org/10.1105/tpc.8.7.1137

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1996 by American Society of Plant Biologists

Abstract

Flowers of Clarkia breweri, an annual plant from the coastal range of California, emit a strong sweet scent of which S-linalool, an acyclic monoterpene, is a major component. Chromosomal, chemical, and morphological data, and the species' geographic distribution, suggest that C. breweri evolved from an extant nonscented species, C. concinna. A cDNA of Lis, the gene encoding S-linalool synthase, was isolated from C. breweri. We show that in C. breweri, Lis is highly expressed in cells of the transmitting tract of the stigma and style and in the epidermal cells of petals, as well as in stamens, whereas in the nonscented C. concinna, Lis is expressed only in the stigma and at a relatively low level. In both species, changes in protein levels parallel changes in mRNA levels, and changes in enzyme activity levels parallel changes in protein levels. The results indicate that in C. breweri, the expression of Lis has been upregulated and its range enlarged to include cells not expressing this gene in C. concinna. These results show how scent can evolve in a relatively simple way without the evolution of highly specialized "scent glands" and other specialized structures. Lis encodes a protein that is structurally related to the family of proteins termed terpene synthases. The protein encoded by Lis is the first member of this family found to catalyze the formation of an acyclic monoterpene.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Cell.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Evolution of floral scent in Clarkia: novel patterns of S-linalool synthase gene expression in the C. breweri flower.
(Your Name) has sent you a message from Plant Cell
(Your Name) thought you would like to see the Plant Cell web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Evolution of floral scent in Clarkia: novel patterns of S-linalool synthase gene expression in the C. breweri flower.
N Dudareva, L Cseke, V M Blanc, E Pichersky
The Plant Cell Jul 1996, 8 (7) 1137-1148; DOI: 10.1105/tpc.8.7.1137

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Evolution of floral scent in Clarkia: novel patterns of S-linalool synthase gene expression in the C. breweri flower.
N Dudareva, L Cseke, V M Blanc, E Pichersky
The Plant Cell Jul 1996, 8 (7) 1137-1148; DOI: 10.1105/tpc.8.7.1137
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

The Plant Cell
Vol. 8, Issue 7
Jul 1996
  • Table of Contents
  • Index by author

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Cell Preview
  • Archive
  • Teaching Tools in Plant Biology
  • Plant Physiology
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Peer Review Reports
  • Journal Miles
  • Transfer of reviews to Plant Direct
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds
  • Contact Us

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire