Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Cell
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Cell

Advanced Search

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Follow PlantCell on Twitter
  • Visit PlantCell on Facebook
  • Visit Plantae
Abstract
You have accessRestricted Access

Race-specific elicitors of Cladosporium fulvum promote translocation of cytosolic components of NADPH oxidase to the plasma membrane of tomato cells.

T Xing, V J Higgins, E Blumwald
T Xing
Department of Botany, University of Toronto, Ontario, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V J Higgins
Department of Botany, University of Toronto, Ontario, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E Blumwald
Department of Botany, University of Toronto, Ontario, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published February 1997. DOI: https://doi.org/10.1105/tpc.9.2.249

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1997 by American Society of Plant Biologists

Abstract

The effect of race-specific elicitors on NADPH oxidase was examined in vivo by treating tomato cells with elicitor-containing intercellular fluids prepared from infected tomato leaves inoculated with specific Cladosporium fulvum races. Treatment of Cf-4 or Cf-5 cells with intercellular fluids from incompatible but not from compatible races of C. fulvum increased oxidase activity and the amount of p67-phox, p47-phox, and rac2 in the plasma membrane. Comparison of these three components in the cytosol and plasma membrane indicated that elicitors promoted the translocation of cytosolic components of NADPH oxidase to the plasma membrane of tomato cells carrying the appropriate resistance gene. Protein kinase C activators and inhibitors did not affect enzyme activity or the binding of these three components to the plasma membrane. In contrast, staurosporine, calmodulin antagonists, and EGTA inhibited elicitor-induced oxidase activity and the translocation of the cytosolic components. The assembly process involves a Ca(2+)-dependent protein kinase that catalyzes the phosphorylation of p67-phox and p47-phox, facilitating their translocation to the plasma membrane. Our data suggest that although both plants and animals share common elements in eukaryotic signal transduction, the involvement of different protein kinases mediating the activation of phosphorylation of p67-phox and p47-phox may reflect the unique spatial and temporal distribution of signal transduction pathways in plants.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Cell.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Race-specific elicitors of Cladosporium fulvum promote translocation of cytosolic components of NADPH oxidase to the plasma membrane of tomato cells.
(Your Name) has sent you a message from Plant Cell
(Your Name) thought you would like to see the Plant Cell web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Race-specific elicitors of Cladosporium fulvum promote translocation of cytosolic components of NADPH oxidase to the plasma membrane of tomato cells.
T Xing, V J Higgins, E Blumwald
The Plant Cell Feb 1997, 9 (2) 249-259; DOI: 10.1105/tpc.9.2.249

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Race-specific elicitors of Cladosporium fulvum promote translocation of cytosolic components of NADPH oxidase to the plasma membrane of tomato cells.
T Xing, V J Higgins, E Blumwald
The Plant Cell Feb 1997, 9 (2) 249-259; DOI: 10.1105/tpc.9.2.249
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

The Plant Cell
Vol. 9, Issue 2
Feb 1997
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Cell Preview
  • Archive
  • Teaching Tools in Plant Biology
  • Plant Physiology
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Peer Review Reports
  • Journal Miles
  • Transfer of reviews to Plant Direct
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds
  • Contact Us

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire