Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Cell
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Cell

Advanced Search

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Follow PlantCell on Twitter
  • Visit PlantCell on Facebook
  • Visit Plantae
Abstract
You have accessRestricted Access

Sucrose control of phytochrome A signaling in Arabidopsis.

P P Dijkwel, C Huijser, P J Weisbeek, N H Chua, S C Smeekens
P P Dijkwel
Department of Molecular Cell Biology, University of Utrecht, The Netherlands.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Huijser
Department of Molecular Cell Biology, University of Utrecht, The Netherlands.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P J Weisbeek
Department of Molecular Cell Biology, University of Utrecht, The Netherlands.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N H Chua
Department of Molecular Cell Biology, University of Utrecht, The Netherlands.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S C Smeekens
Department of Molecular Cell Biology, University of Utrecht, The Netherlands.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published April 1997. DOI: https://doi.org/10.1105/tpc.9.4.583

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1997 by American Society of Plant Biologists

Abstract

The expression of the Arabidopsis plastocyanin (PC) gene is developmentally controlled and regulated by light. During seedling development, PC gene expression is transiently induced, and this induction can be repressed by sucrose. In transgenic seedlings carrying a PC promoter-luciferase fusion gene, the luciferase-induced in vivo luminescence was similarly repressed by sucrose. From a mutagenized population of such transgenic seedlings, we selected for mutant seedlings that displayed a high luminescence level when grown on a medium with 3% sucrose. This screening of mutants resulted in the isolation of several sucrose-uncoupled (sun) mutants showing reduced repression of luminescence by sucrose. Analysis of the sun mutants revealed that the accumulation of PC and chlorophyll a/b binding protein (CAB) mRNA was also sucrose uncoupled, although the extent of uncoupling varied. The effect of sucrose on far-red light high-irradiance responses was studied in wild-type, sun1, sun6, and sun7 seedlings. In wild-type seedlings, sucrose repressed the far-red light-induced cotyledon opening and inhibition of hypocotyl elongation. sun7 seedlings showed reduced repression of these responses. Sucrose also repressed the far-red light-induced block of greening in wild-type seedlings, and both sun6 and sun7 were affected in this response. The results provide evidence for a close interaction between sucrose and light signaling pathways. Moreover, the sun6 and sun7 mutants genetically identify separate branches of phytochrome A-dependent signal transduction pathways.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Cell.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Sucrose control of phytochrome A signaling in Arabidopsis.
(Your Name) has sent you a message from Plant Cell
(Your Name) thought you would like to see the Plant Cell web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Sucrose control of phytochrome A signaling in Arabidopsis.
P P Dijkwel, C Huijser, P J Weisbeek, N H Chua, S C Smeekens
The Plant Cell Apr 1997, 9 (4) 583-595; DOI: 10.1105/tpc.9.4.583

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Sucrose control of phytochrome A signaling in Arabidopsis.
P P Dijkwel, C Huijser, P J Weisbeek, N H Chua, S C Smeekens
The Plant Cell Apr 1997, 9 (4) 583-595; DOI: 10.1105/tpc.9.4.583
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

The Plant Cell
Vol. 9, Issue 4
Apr 1997
  • Table of Contents
  • Index by author

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Cell Preview
  • Archive
  • Teaching Tools in Plant Biology
  • Plant Physiology
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Peer Review Reports
  • Journal Miles
  • Transfer of reviews to Plant Direct
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds
  • Contact Us

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire