Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Cell
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Teaching Tools in Plant Biology
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Cell

Advanced Search

  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
  • About
    • Editorial Board and Staff
    • About the Journal
    • Terms & Privacy
  • More
    • Alerts
    • Contact Us
  • Submit a Manuscript
    • Instructions for Authors
    • Submit a Manuscript
  • Follow PlantCell on Twitter
  • Visit PlantCell on Facebook
  • Visit Plantae
Abstract
You have accessRestricted Access

The Frequency and Degree of Cosuppression by Sense Chalcone Synthase Transgenes Are Dependent on Transgene Promoter Strength and Are Reduced by Premature Nonsense Codons in the Transgene Coding Sequence.

Q. Que, H. Y. Wang, J. J. English, R. A. Jorgensen
Q. Que
Environmental Horticulture, University of California, Davis, California 95616-8587.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. Y. Wang
Environmental Horticulture, University of California, Davis, California 95616-8587.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. J. English
Environmental Horticulture, University of California, Davis, California 95616-8587.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. A. Jorgensen
Environmental Horticulture, University of California, Davis, California 95616-8587.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published August 1997. DOI: https://doi.org/10.1105/tpc.9.8.1357

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1997 by American Society of Plant Biologists

Abstract

By comparing the effects of strong and weak promoters that drive sense chalcone synthase (Chs) transgenes in large populations of independently transformed plants, we show here that a strong transgene promoter is required for high-frequency cosuppression of Chs genes and for production of the full range of cosuppression phenotypes. In addition, sense Chs transgenes driven by a cauliflower mosaic virus 35S promoter possessing a single copy of the upstream activator region (UAR) were found to produce a significantly lower degree of cosuppression than they did when the transgene promoter possessed two or four copies of the UAR. It has been shown elsewhere that 35S promoter strength increases with increasing UAR copy number. Frameshift mutations producing early nonsense codons in the Chs transgene were found to reduce the frequency and the degree of cosuppression. These results suggest that promoter strength and transcript stability determine the degree of cosuppression, supporting the hypothesis that sense cosuppression is a response to the accumulation of transcripts at high concentrations. This conclusion was shown to apply to single-copy transgenes but not necessarily to inversely repeated transgenes. The results presented here also have significance for efficient engineering of cosuppression phenotypes for use in research and agriculture.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Cell.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The Frequency and Degree of Cosuppression by Sense Chalcone Synthase Transgenes Are Dependent on Transgene Promoter Strength and Are Reduced by Premature Nonsense Codons in the Transgene Coding Sequence.
(Your Name) has sent you a message from Plant Cell
(Your Name) thought you would like to see the Plant Cell web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
The Frequency and Degree of Cosuppression by Sense Chalcone Synthase Transgenes Are Dependent on Transgene Promoter Strength and Are Reduced by Premature Nonsense Codons in the Transgene Coding Sequence.
Q. Que, H. Y. Wang, J. J. English, R. A. Jorgensen
The Plant Cell Aug 1997, 9 (8) 1357-1368; DOI: 10.1105/tpc.9.8.1357

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
The Frequency and Degree of Cosuppression by Sense Chalcone Synthase Transgenes Are Dependent on Transgene Promoter Strength and Are Reduced by Premature Nonsense Codons in the Transgene Coding Sequence.
Q. Que, H. Y. Wang, J. J. English, R. A. Jorgensen
The Plant Cell Aug 1997, 9 (8) 1357-1368; DOI: 10.1105/tpc.9.8.1357
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

The Plant Cell
Vol. 9, Issue 8
Aug 1997
  • Table of Contents
  • Index by author

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Cell Preview
  • Archive
  • Teaching Tools in Plant Biology
  • Plant Physiology
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Peer Review Reports
  • Journal Miles
  • Transfer of reviews to Plant Direct
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds
  • Contact Us

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire