The IMMUTANS Variegation Locus of Arabidopsis Defines a Mitochondrial Alternative Oxidase Homolog That Functions during Early Chloroplast Biogenesis

Dongying Wu,⁎,1 David A. Wright,⁎,1⁎,2 Carolyn Wetzel,⁎ Daniel F. Voytas,⁎,2 and Steven Rodermel⁎,1,2

⁎Department of Botany, Iowa State University, Ames, Iowa 50011
⁎Interdepartmental Genetics Program, Iowa State University, Ames, Iowa 50011
⁎Department of Zoology and Genetics, Iowa State University, Ames, Iowa 50011

Nuclear gene-induced variegation mutants provide a powerful system to dissect interactions between the genetic systems of the nucleus–cytoplasm, the chloroplast, and the mitochondrion. The immutans (im) variegation mutation of Arabidopsis is nuclear and recessive and results in the production of green- and white-sectored leaves. The green sectors contain cells with normal chloroplasts, whereas the white sectors are heteroplastidic and contain cells with abnormal, pigment-deficient plastids as well as some normal chloroplasts. White sector formation can be promoted by enhanced light intensities, but sectoring becomes irreversible early in leaf development. The white sectors accumulate the carotenoid precursor phytoene. We have positionally cloned IM and found that the gene encodes a 40.5-kD protein with sequence motifs characteristic of alternative oxidase, a mitochondrial protein that functions as a terminal oxidase in the respiratory chains of all plants. However, phylogenetic analyses revealed that the IM protein is only distantly related to these other alternative oxidases, suggesting that IM is a novel member of this protein class. We sequenced three alleles of im, and all are predicted to be null. Our data suggest a model of variegation in which the IM protein functions early in chloroplast biogenesis as a component of a redox chain responsible for phytoene desaturation but that a redundant electron transfer function is capable of compensating for IM activity in some plastids and cells.

INTRODUCTION

Variegation mutants have played a prominent role in the history of genetics (reviewed in Granick, 1955). As a notable example, they were used by E. Bauer in his seminal studies in the early 1900s to describe the phenomenon of non-Mendelian inheritance. The cells in the green sectors of these plants have morphologically normal chloroplasts, whereas cells in the white sectors have abnormal plastids deficient in pigments and organized lamellar structures. One common mechanism of variegation involves the induction of defective mitochondria or chloroplasts in some but not all cells by mutations in nuclear genes (Tilney-Bassett, 1975). Because the products defined by these genes are required for normal chloroplast biogenesis, they provide an excellent starting point to dissect the poorly understood pathways of communication between the nuclear–cytoplasmic, chloroplast, and mitochondrial genetic systems (Taylor, 1989).

Several well-known examples of variegated plants induced by nuclear gene mutations include the maize iojap and nonchromosomal stripe (NCS) mutants (e.g., Walbot and Coe, 1979; Roussel et al., 1991; Han et al., 1992; Gu et al., 1993) and the barley albostrians mutant (e.g., Hess et al., 1994). Both iojap and albostrians are recessive and give rise to defective, maternally inherited plastids that undergo sorting out to form clonal sectors of affected (white) cells. In both mutants, the plastid defect is traceable to a loss of chloroplast ribosomes and an inability to synthesize chloroplast DNA-encoded components of the photosynthetic apparatus. IOJAP has been cloned and sequenced and encodes a protein that is associated with the 50S subunit of the chloroplast ribosome (Han et al., 1992; Han and Martienssen, 1995). Like iojap and albostrians, NCS mutants are recessive. They condition alterations in the mitochondrial genome that generate permanently defective, maternally inherited mitochondria that presumably sort out to form clones of cells containing either all-defective or all-normal mitochondria (e.g., Lauer et al., 1990). Green and white sectors can be observed in NCS mutants because the defective mitochondria secondarily affect chloroplast form and function.

Despite the wealth of Arabidopsis mutants, only a handful of nuclear loci have been described that give rise to a variegation phenotype. These include var1 and var2 (Martínez-Zapater, 1992), chloroplast mutator (Rédei, 1973; Martínez-Zapater et al., 1992; Sakamoto et al., 1996), and immutans

1 These authors contributed equally to this work.
2 To whom correspondence should be addressed. E-mail rodermel@iastate.edu; fax 515-294-1337.
(im; Rédei, 1963, 1967; Röbbelen, 1968; Wetzel et al., 1994; Meehan et al., 1996; Wetzel and Rodermel, 1998). Excluded from this list are alleles of a number of genes that have been transposon tagged by various mutagens (e.g., Activator) and that sector because of rounds of element insertion and excision. Of the “natural” variegation loci, only chloroplast mutator and im have been characterized to an appreciable extent. Like NCS, chloroplast mutator is recessive and promotes mitochondrial DNA rearrangements that result in permanently defective, maternally inherited mitochondria; chloroplast phenotype is affected secondarily (Martínez-Zapater et al., 1992; Sakamoto et al., 1996).

im (Figure 1) is also recessive, but in contrast to chloroplast mutator, sectoring is sensitive to light intensity and temperature: elevated light or temperature results in an increase in white sector formation (Rédei, 1963; Röbbelen, 1968). Rédei (1963, 1975) also found that pure-white reproductive bolts of im can give rise to all-green, all-white, or variegated progeny, depending on the light and temperature growth regimes of the progeny. Because of the apparent reversibility of the phenotype and an inability of the mutant to convert permanently from a normal green to an all-white phenotype, Rédei (1975) called the mutation im, from a Latin word meaning immutable.

We originally became interested in im because we felt that it might provide information about the pathways of interorganelar communication. To this end, we have examined plastid morphology and inheritance, analyzed pigment compositions, and examined patterns of nuclear and chloroplast gene expression in the mutant (Wetzel et al., 1994; Meehan et al., 1996; Wetzel and Rodermel, 1998). We found that the im-conferred phenotype is first expressed during early germination and that white tissues of the mutant can be heteroplastidic for cells that contain abnormal and normal-appearing plastids. Heteroplastidic cells are a rare phenomenon in plants, because plastids typically sort out rapidly to form clones of pure-white and pure-green cells (i.e., homoplastidic cells) (Tilney-Bassett, 1975). The finding of heteroplastidic cells indicates that im is “plastid autonomous” and that the gene product defined by the mutation has an unequal effect on the plastids in a cell. We also found that white im sectors accumulate the carotenoid precursor phytoene but that IM is not the structural gene for phytoene desaturase (PDS), the enzyme that converts phytoene to ζ-carotene in the plastid (Bartley et al., 1991; Wetzel et al., 1994). We further observed that PDS mRNA and protein levels are normal in the mutant (Wetzel and Rodermel, 1998), indicating that IM does not directly affect PDS expression. One possibility we suggested is that IM could be a cofactor required for maximal PDS activity (Wetzel et al., 1994). The phenotype of the im mutant is very similar to that of the ghost variegation mutant of tomato (e.g., Scolnik et al., 1987; Giuliano et al., 1993), and the two mutants may have defects in homologous genes.

In this study, we report the positional cloning of IM, and we define the nature of the mutations in three im alleles, including two x-ray–induced alleles that were generated by Rédei nearly 50 years ago. We also show that the IM protein is related to alternative oxidase (AOX), an inner mitochondrial membrane protein that functions as a terminal oxidase in the respiratory chains of all plants and of some algae, fungi, and protists.

RESULTS

Positional Cloning of IM

IM resides within an ~9.6-centimorgan (cM) interval on chromosome 4 between cer2 and ag (Wetzel et al., 1994) (Figure 2A). To initiate a chromosome walk to the gene, we generated an F2 mapping population by performing crosses between a line carrying the spotty allele of im (in the Columbia ecotype background) (Wetzel et al., 1994) and a Landsberg erecta chromosome 4 marker line (cer2/ap2/bp2) (Koornneef et al., 1983). Early in the walk, there was a dearth of physical information on chromosome 4, and F2 plants were screened for recombination breakpoints in the bp–im and im–cer2 intervals on the basis of phenotype. However, as more physical information became available, we were able to screen recombinant F2 plants rapidly by using markers nga1111 and nga1139, which encompass im within an ~40-cM interval (Figure 2B) (Bell and Ecker, 1994).
We identified a restriction fragment length marker that mapped close to im (LM117; \(\sim 0.12 \) cM), and this marker served as the starting point for the walk (Figure 2B). This marker was used to detect a series of overlapping yeast artificial chromosomes (YACs), which were then mapped with respect to im by using cleaved amplified polymorphic sequence (CAPS) markers (Konieczny and Ausubel, 1993). The CAPS markers were generated from YAC end clones as well as from random EcoRI fragments of YAC CIC7H1. By using this analysis, we were able to determine that YAC CIC7H1 completely encompasses im. The YAC-derived markers also were used to isolate a series of overlapping bacterial artificial chromosomes (BACs) and cosmid clones that immediately flank im. BAC and cosmid end clones were then isolated, and CAPS markers were generated. These were used to fine-map recombination breakpoints within the vicinity of im. We were unable to isolate cosmids or plasmids that overlapped im. This was due to a sequence immediately downstream from the gene that caused clone instability in Escherichia coli (data not shown). The region encompassing im was finally overlapped by a long polymerase chain reaction (PCR) product (24 kb) generated with primers based on cos37 and cos152 DNA sequences (Figure 2B).

To localize im within the long PCR product, we digested the PCR product with Sall and ScaI and cloned the fragments into pBluescript. Using the cloned fragments as probes, we conducted genomic DNA gel blot experiments to detect polymorphisms between DNAs from various im alleles and wild-type Columbia DNA. Rédei’s initial studies with im were based on the x-ray–induced im-1 allele (Rédei, 1963, 1967). A 3.1-kb Sall-SalI subfragment of the long PCR product detected a 3.4-kb EcoRI fragment in the wild-type DNA that was shifted to a smaller 2.5-kb EcoRI fragment in im-1 DNA (data not shown). This 3.4-kb fragment was used as a probe to isolate four different-sized cDNAs from an Arabidopsis cDNA library (Newman et al., 1994). This library contained sequences from developmental stages when we would anticipate IM to be expressed (Wetzel and Rodermel, 1998). The cDNAs were sequenced and found to be derived from a single gene. This is consistent with low-stringency genomic DNA gel blot analyses showing that IM is most likely a single-copy gene in Arabidopsis (data not shown). The sequence of the longest of the four cDNAs (1.4 kb) was compared with that of the wild-type genomic sequence, and a gene with nine exons was identified (Figure 3A). We were unable to detect a transcript for this gene on gel blots using RNA from a variety of tissues and developmental stages when we would expect IM to be expressed (Wetzel and Rodermel, 1998), indicating that the gene is expressed at very low levels.

The candidate IM gene was contained completely within the 3.4-kb EcoRI fragment identified by our probe in wild-type DNA (Figure 3B). To characterize the rearrangement in

Figure 2. Positional Cloning of im.

(A) Genetic map. im maps between cer2 and ag on chromosome 4 (Rédei, 1967; Wetzel et al., 1994).

(B) Physical map. The physical contig encompassing im extends from restriction fragment length polymorphism marker LM117 to cleaved amplified polymorphic sequence (CAPS) marker 7H1L, which represents a distance of \(\sim 320 \) kb. CAPS markers 7H1-37 and cos294L cosegregate with im. Two of six yeast artificial chromosomes (YACs) in the im contig are shown; this is part of an extended 17-Mb YAC contig in this region of chromosome 4 (Schmidt et al., 1996). Bacterial artificial chromosomes (BACs) and cosmid clones in the immediate vicinity of im are shown. End clones that were isolated and converted into CAPS markers are designated by rectangles on the clone diagrams. The number of recombinant chromosomes between markers is indicated. A total of 2495 \(F_2 \) plants (4990 chromosomes) were analyzed to generate the recombinant population.
Mutations in the candidate gene (at base pair 1620) compared with the wild type (Figure 3B). In searches of the DNA sequence databases, the novel sequences from both the 2.5- and 4.5-kb EcoRI fragments were found adjacent to one another in BAC F18E5, which contains an insert of chromosome 4 DNA (GenBank accession number AL022603). This BAC lies outside of our contig, which extends ~200 kb on either side of IM. Considered together, these data indicate that a very large inversion has occurred on chromosome 4 in the im-1 strain and that this inversion interrupts a gene whose map position corresponds to im.

Two other im alleles were characterized to determine whether they carry mutations in the candidate gene. CS3157 is another x-ray–induced im allele that was originally isolated by Rédei. Genomic PCR products of the gene in CS3157 were sequenced, and a G-to-A transition was identified at the sixth exon/sixth intron boundary (Figures 3A and 3C). Because intron splice sites are conserved in higher plants (Brendel et al., 1998), this change would be predicted to give rise to a splicing defect. This possibility was tested using exon primers that span the mutation to amplify mRNA by reverse transcriptase–PCR (RT-PCR). The DNA sequence of the RT-PCR product showed that the mutation gave rise to an mRNA that was spliced at an alternative downstream 5' splice site (Figure 3C). This sequence should give rise to a truncated protein, because a premature stop codon is generated immediately downstream of the alternative splice site.

The third im allele we examined was spotty, which was induced by ethyl methanesulfonate mutagenesis (Wetzel et al., 1994). In spotty, we identified a point mutation in the fourth exon of the candidate gene that changes a G to an A (Figures 3A and 3D). This transition converts a tryptophan codon to a stop codon. RT-PCR analyses failed to detect an mRNA species for the candidate gene in the spotty background.

In summary, we conclude that we have isolated IM on the basis of both the fine-mapping studies and the identification of mutations in a gene from three independent im alleles. This conclusion has been confirmed by analysis of Activator-tagged mutants of this gene (Carol et al., 1999).

IM Is an AOX Homolog

The largest of the im cDNAs that we characterized was 1.4 kb. The 5' end of the mRNA was identified by 5' rapid amplification of cDNA ends (5' RACE) (data not shown); these analyses extended the 5' end of the cDNA ~60 bp. Figure 4A shows the complete cDNA sequence and deduced amino acid sequence of the IM protein. The amino acid sequence predicts a protein with a calculated molecular mass of 40.5 kD. Database searches revealed that the amino acid}
mutans Defines a Novel AOX 47 sequence bears high similarity to AOXs (P = 1 × 10⁻⁴ to 4 × 10⁻¹³). AOXs are inner mitochondrial membrane proteins found in all higher plants and in some algae, fungi, and protists (Siedow and Umbach, 1995; Vanlerberghe and McIntosh, 1997). Species with AOX have two pathways of respiration: a cyanide-sensitive pathway, whose terminal oxidase is cytochrome c oxidase; and a cyanide-resistant, salicylhydroxamic acid–sensitive pathway, whose terminal oxidase is AOX. The two pathways diverge at the ubiquinol pool, with AOX directly transferring electrons from ubiquinol to oxygen.

AOX genes typically constitute small nuclear multigene families (Saisho et al., 1997; Vanlerberghe and McIntosh, 1997). In Arabidopsis, for example, there are four AOX gene family members, designated AOX1a, AOX1b, AOX1c, and AOX2 (Kumar and Soll, 1992; Sasho et al., 1997). The deduced amino acid sequences of all AOX genes share several conserved domains. These include two α-helical, membrane-spanning domains in the center of the protein and two iron binding motifs in the hydrophilic C-terminal portion of the protein (Siedow and Umbach, 1995; Vanlerberghe and McIntosh, 1997). The latter motifs may form a binuclear iron center (Moore et al., 1995; Siedow et al., 1995). Higher plant AOX proteins also appear to have two conserved cysteine residues that are involved in dimerization and in the regulation of enzyme activity by redox status and pyruvate (Umbach and Siedow, 1993, 1996). One or both of these cysteines is missing in non-plant proteins (Vanlerberghe and McIntosh, 1997).

Figures 4B and 4C show that the conserved domains of higher plant AOX proteins also are conserved in the deduced amino acid sequence of the IM protein; AOX1a and AOX2 from Arabidopsis are used as representative protein sequences for comparison. The regions of similarity include the membrane-spanning domains (T1 and T2). These regions in IM...
were predicted to be part of a transmembrane domain by the PHDhtm program (>80% confidence level) (Rost et al., 1995). In contrast to the derived amino acid sequences of other characterized AOX genes, the derived IM sequence has homology to three putative iron binding motifs (B1, B2, and B3). The first of these (B1) is located in a comparable position to the AOX B1 motif, but the IM B1 sequence is slightly degenerate. The B2 sequence is highly conserved in position and sequence. The B3 motif, on the other hand, is downstream from where the Arabidopsis AOX1A and AOX2 sequences end. IM also differs from higher plant AOX proteins in that the two conserved cysteines are not present.

In contrast to the C terminus, the N terminus of IM bears little identifiable similarity to other AOX proteins. PSORT software (Nakai and Kanehisa, 1992) predicts that the first 50 amino acids of the protein comprise an N-terminal transit sequence to target IM to the chloroplast. For instance, this region has a high content of serine (22%), no aspartic acid or glutamic acid, and an alanine after the initiating methionine (Cline and Henry, 1996). The presence of a sequence that is capable of targeting IM to the plastid in vitro has been confirmed by Carol et al. (1999).

To further assess relationships between IM and known AOX amino acid sequences, we conducted phylogenetic analyses using the neighbor-joining algorithm (Saitou and Nei, 1987; Felsenstein, 1993) (Figure 5). For tree construction, amino acid sequences were limited to the conserved transmembrane domains and the first two iron binding motifs (double-headed arrow in Figure 4B). IM and all plant AOX gene sequences were well separated from AOX genes of algae, fungi, and protists (in 65% of bootstrap replicates). This suggests that IM shares a more recent evolutionary history with plant AOX genes. Most plant AOX sequences form a single, well-supported clade (95% bootstrap support) (the nine sequences in the bottom of Figure 5). Genes within this branch share ~75 to 95% amino acid identity. Although more distantly related AOX genes are found in plants (namely, Arabidopsis AOX2, Glycine max AOX2 and AOX3, and Mangifera indica AOX), their relationship to each other and to the other AOX genes is less clear. IM is distantly related to all plant AOX genes (as indicated by its long branch length), including these more divergent AOX family members. Thus, even though IM shares many conserved structural motifs with plant AOX genes, it appears to be a novel type of AOX.

DISCUSSION

IM Is a Novel AOX-like Chloroplast Protein

All higher plants have an alternative (cyanide-resistant) pathway of mitochondrial respiration in the inner membrane that branches from the cytochrome pathway at the ubiquinone pool (reviewed in Siedow and Umbach, 1995; Vanlerbergh and McIntosh, 1997). The alternative pathway uses a terminal oxidase (AOX) that generates water from ubiquinol in a four-electron transfer reaction. The alternative pathway does not contribute to the generation of an electrochemical gradient and therefore is not coupled to ATP production. Because AOX is able to compete with the cytochrome pathway for electrons, the alternative pathway does not serve merely as an “energy overflow” mechanism when electron transport through the cytochrome pathway is saturated with electrons, damaged, or restricted by the availability of ADP (Purvis and Shewfelt, 1993; Hoefnagel et al., 1995; Ribas-Carbo et al., 1995; Siedow and Umbach, 1995). Vanlerbergh et al. (1997) have demonstrated that the alternative pathway may play an important role in balancing carbon metabolism and electron transport.

Our data suggest that the IM gene product is a member of the AOX class of proteins. Not only does its derived C-terminal sequence bear regions of high similarity to the signature motifs of AOX proteins from diverse sources, but phylogenetic analyses indicate that IM is distantly related to all known plant AOX genes. On the other hand, the lack of similarity in the N terminus suggests, at a minimum, that IM
functions as an AOX, then its regulation is likely very different from that of known AOX proteins. For example, IM lacks the two conserved cysteines that are important in dimerization and regulation of AOX activity in higher plants (Umbach and Siedow, 1993, 1996). IM also has three rather than two putative iron binding motifs. Furthermore, our analyses revealed that IM is targeted to the chloroplast rather than the mitochondrion, as is the case with other AOX proteins. This has been confirmed by the demonstration that IM is associated with the membrane fraction of plastids in an in vitro import assay (Carol et al., 1999).

Mechanism of im Variegation

A satisfactory explanation of sector formation in im must take into account the following observations.

1. Ultrastructural analyses have shown that whereas cells in the green sectors contain normal chloroplasts, cells in the white sectors are heteroplastidic for normal-appearing chloroplasts and vacuolated plastids that lack internal lamellar structures (Wetzel et al., 1994). The finding of heteroplastidic cells indicates that the nuclear gene product coded for by im has an unequal affect on the plastids in a cell, that is, the mutation is “plastid autonomous” (Wetzel et al., 1994).

2. White sector formation is promoted by enhanced light intensities (Rédei, 1963; Röbbelen, 1968; Wetzel et al., 1994).

3. Sector formation during leaf development results in a fixed pigmentation state in im. Pure-white and heteroplastidic cells do not become green when placed under low light intensities, and green sectors do not bleach when plants are placed under high light intensities (Wetzel et al., 1994).

4. IM is first expressed in cotyledons during a discrete, light-responsive phase immediately following seed coat breakage. Its expression during this phase determines reversibly the degree of white and green sector formation in the cotyledons (Wetzel et al., 1994). This suggests that sector formation in leaves is also determined at an early stage of cell development.

5. The white im sectors accumulate phytoene, suggesting that PDS activity is impaired in the white cells (Wetzel et al., 1994). However, PDS mRNA and protein levels are normal in the green and white sectors of the mutant (Wetzel and Rodermel, 1998).

Role of IM in Carotenoid Synthesis: Why Does Phytoene Accumulate?

Accumulation of phytoene in im white sectors, where the PDS protein is found at wild-type levels, indicates that PDS is not active in this tissue. The lack of activity is not a generalized result of photooxidation, because a chemically induced block in carotenoid biosynthesis at a later step in the pathway causes bleaching but not accumulation of phytoene (Sandmann and Böger, 1989). Precursor-feeding experiments have revealed that chlorophyll synthesis is not specifically inhibited in im (C. Wetzel and S. Rodermel, unpublished data). Thus, the white sectors in mutant leaves are the result of impaired PDS activity leading to a block in carotenoid synthesis. Lack of carotenoids leads secondarily to a loss of chlorophyll, due either to inhibition of its accumulation and/or to its photodestruction.

All of the early steps of carotenoid biosynthesis are mediated by soluble stromal enzymes, but the later steps, that is, those including and subsequent to the desaturation of phytoene, occur on membrane-bound enzymes (e.g., Kreuz et al., 1982; Bonk et al., 1996; Cunningham and Gantt, 1998). These enzymes may form a multisubunit complex. A function of this complex would be to transfer electrons from phytoene to a series of acceptors during the PDS and ZDS (z-carotene desaturase) desaturation steps of the pathway. Consistent with this proposal, several redox components have been found to be necessary for PDS activity: plastoquinone (Mayer et al., 1990; Schulz et al., 1993; Nievelstein et al., 1995; Norris et al., 1995), NADPH (Mayer et al., 1992), PDS-bound flavin adenine dinucleotide (Hugueney et al., 1992; Al-Babili et al., 1996), and molecular oxygen (Beyer et al., 1989; Mayer et al., 1990). Also consistent with this proposal are analyses of the redox activities of various artificial quinones. These analyses have suggested that phytoene desaturation involves a multicomponent redox chain between PDS and oxygen (Mayer et al., 1990).

Our finding that IM bears striking homology to AOX suggests that IM may be an electron transfer component of the phytoene desaturation pathway. We have previously suggested that IM may be a cofactor required for PDS activity (Wetzel et al., 1994, Wetzel and Rodermel, 1998). This possibility is illustrated in Figure 6A. In this model, electrons would be transferred from phytoene via PDS to IM and thence to the plastoquinone pool. In the absence of IM, phytoene would be expected to accumulate. However, another possibility is that IM functions like AOX, that is, as a terminal oxidase, and transfers electrons either directly to molecular oxygen (Figure 6A) or in a more indirect manner from PDS to oxygen (Figure 6B). The latter would be consistent with a function of IM as the elusive plastoquinol oxidase in the chlororespiratory chain (e.g., Büchel and Garab, 1997; Burrows et al., 1998; Feild et al., 1998; Kofer et al., 1998; Shikanai et al., 1998). In either of these cases, phytoene might again be predicted to build up in the absence of IM: PDS would be unable to desaturate phytoene (Figure 6A), or the plastoquinone pool could become over-reduced (e.g., in cases in which electron transfer from the plastoquinone pool to photosystem I is limiting; see below), thus preventing the transfer of electrons from PDS to plastoquinone (Figure 6B). Although the models in Figure 6 have placed IM-related electron transport in the context of the photosynthetic electron transport chain via the plastoquinone pool, it is possible that a portion of the pathway exists in the inner envelope (Jäger-Vottero et al., 1997).
In an earlier model of im variegation (Wetzel et al., 1994), we hypothesized that the mutation rendered the IM gene product light-labile (but still partially functional) and that a threshold of IM activity was required for normal chloroplast development. In the mutant, we assumed that the higher the light intensity, the fewer the plastids with the requisite threshold and hence the greater the extent of white sector formation. We have amended our hypothesis in light of our finding that the three im alleles we have sequenced (spotty, CS3157, and im-1) are most likely null, and therefore, no IM gene product is present for light-induced destruction. Taken together with the fact that im plants are heteroplastic and variegated, not albino, the finding of null im alleles suggests that there is a redundant function that is able to compensate for the absence of IM activity in the green plastids. We have amended our hypothesis in light of our finding that the three im alleles we have sequenced (spotty, CS3157, and im-1) are most likely null, and therefore, no IM gene product is present for light-induced destruction. Taken together with the fact that im plants are heteroplastic and variegated, not albino, the finding of null im alleles suggests that there is a redundant function that is able to compensate for the absence of IM activity in the green plastids. Low-stringency hybridizations have failed to detect IM-related sequences in the Arabidopsis genome (data not shown), and hence the redundant or parallel redox component is unlikely to be another IM-like AOX protein. As illustrated in Figure 6A, one possibility is that the redundant function is inefficient transfer of electrons from PDS to the plastoquinone pool. In Figure 6B, the redundant function is illustrated as electron flow to photosystem I.

Carotenoids act as nonphotochemical quenchers of excess light energy absorbed by light-harvesting complexes (e.g., reviewed in Demmig-Adams et al., 1996). In the absence of a sufficient level of free-radical scavenging mechanisms (such as may occur during the early stages of chloroplast biogenesis), unquenched excess light energy leads to the formation of harmful active oxygen species and to photooxidation of the contents of the plastid.-photooxidative damage appears to be localized to the plastid compartment (Oelmüller, 1989). As revised, our model invokes a threshold of electron transport capacity for phytoene desaturation that is required for carotenoid synthesis and the development of green chloroplasts. Below this threshold, carotenoids cannot be made in sufficient quantity to prevent light-induced photodestruction.

According to our model, different pathways of electron transport function in phytoene desaturation at different stages of development and with different efficiencies, depending on which electron transport components are available. A fundamental assumption is that IM is one of these components and is required for carotenoid synthesis during early chloroplast biogenesis, that is, when thylakoid membranes are being elaborated in growing chloroplasts, after division of either progenitor proplastids in the meristem or mature chloroplasts in the expanding leaf (reviewed in Mullet, 1988). Although we have not yet examined IM ex-
pression during leaf development, this assumption would be consistent with our observation that IM is expressed early in cotyledon development (Wetzel et al., 1994).

We hypothesize that PDS would be unable or only minimally able to perform phytoene desaturation during the early stages of thylakoid development when IM is absent and the alternative pathway is either inefficient (Figure 6A) or not yet fully functional (Figure 6B). Phytoene would accumulate either because electrons could not be transferred quickly enough to the plastoquinone pool by the inefficient path (Figure 6A) or because the plastoquinone pool was over-reduced (Figure 6B). In either of these cases, carotenoid synthesis would be blocked, and the plastids would be in a state vulnerable to high light-induced photooxidation by newly accumulating chlorophylls. In essence, a developmental race would occur between, on the one hand, photooxidation due to a lack of carotenoid photoprotection, and on the other hand, the development of an efficient mechanism of electron transport away from phytoene to accommodate PDS activity and the synthesis of enough carotenoids to afford photoprotection. Low light and thus lower photooxidative pressure would allow more plastids to survive the race through the vulnerable stage, accumulate chlorophylls, and turn green. In the presence of functional IM, electron transport would not be inhibited during early development, and carotenoid synthesis would proceed unhindered, thus avoiding photooxidative vulnerability.

In sum, the outcome of development in IM-deficient plastids is either a white, photooxidized state or a fully functional green state. If the inner membrane structure has been destroyed along with the resident pigments, then there will be no electron transport from phytoene and consequently no carotenoid synthesis (white plastids). If, on the other hand, enough electron transfer from phytoene can occur to support colored carotenoid accumulation, then wild-type levels of pigments can accumulate, as observed in green im plastids and cells (Wetzel et al., 1994; Meehan et al., 1996). White plastids appear to be capable of division because the requisite components are imported from the nucleus–cytoplasm (Tilney-Bassett, 1975). Therefore, the im mutation is effectively plastid autonomous, and each round of plastid division and differentiation carries the same risks of photooxidation.

Tissue-Level Patterns of Variegation

The model we have described explains the development of white plastids at the organelle level, but the phenotype of im manifests itself as tissue-level sectoring. Several factors may be important in determining this patterning. One factor is the light environment. In developing leaves, cells and young plastids do not receive uniform levels of illumination, and the light environment can be affected by the angle of incident light, the presence of shading structures, and the amount of light that penetrates through the tissue layers (reviewed in Smith et al., 1997). One may expect, however, that neighboring cells in areas of leaf development would be subject to relatively similar levels of illumination due to their physical proximity. Thus, even though there would be a range of light levels at the organelle level, the overall difference between a level of light sufficient for the photooxidation of carotenoid-deficient plastids and that permissive for normal chloroplast development may be realized only on sections, or sectors, of cells. In this case, the pattern of variegation would be determined by the light environment. Clearly, higher overall incident light intensities would shift more mutant cells into the photooxidation range.

A second factor that may be important in determining tissue-wide patterns of variegation is related to the amount of existing thylakoid material that is passed into nascent plastids from their progenitors. When white plastids divide, the daughters are especially vulnerable to photooxidation because they have no electron transport capacity to start with for even minimal PDS function. White plastids are propagated forming a clone of cells (a white sector) until, for example, light intensities are lowered. Lower light would decrease the threshold of carotenoid synthesis required for photoprotection, allowing electron transport capacity to develop, phytoene to be desaturated, and carotenoid synthesis to occur. A green plastid (or cell) could then be formed. In like manner, green chloroplasts in mutant tissue do not have wild-type capacity for electron transport and PDS activity; thus, if put under high enough light, they are still susceptible to photooxidation during their vulnerable stage, leading to white sectors arising from green.

A third factor that may affect sectoring is related to the abundance and activities of components of carotenoid biosynthesis—electron transport and radical scavenging. These may be expressed in a cell-specific manner, resulting in a pattern of variegation that is usually obscured. Considered together, our data point toward the notion that tissue-wide patterns of variegation in im are probably due to a complex interplay of factors. Future studies of im should provide much information concerning these mechanisms.

METHODS

Plant Material

The spotty allele of immutans (im) has been described previously (Wetzel et al., 1994). We found that plants carrying this allele, in contrast to other im mutants, are fast growing and easy to cross (S. Rodermel and C. Wetzel, unpublished data); this allele was provided to the Carol group for timely crosses to verify that their Activator-tagged mutation was, indeed, in the IM gene (Caro et al., 1999). For our positional cloning experiments, an F2 mapping population was generated by crossing the spotty allele (in an Arabidopsis thaliana ecotype Columbia background) with a Landsberg erecta chromosome 4 marker strain (cer2/aps2/bp2) (Koomneef et al., 1983). A total of 2495 F2 plants (4990 chromosomes) were analyzed to generate the recombinant pool. The im-1 allele (Rédei, 1967) was obtained.
from G.P. Rédei (University of Missouri, Columbia). The CS3157 allele was obtained from the Arabidopsis Biological Resource Center (Ohio State University, Columbus) and was originally in the mutant collection of G.P. Rédei. im-1 and CS3157 are both in the Columbia background.

DNA Manipulations

Several types of libraries were used in the positional cloning of im. These included four yeast artificial chromosome (YAC) libraries (Ecker, 1990; Ward and J en. 1990; Grill and Somerville, 1991; Creusot et al., 1995), the TAMU bacterial artificial chromosome (BAC) library (Choi et al., 1995), the pOCA18 cosmid library (Olszewski et al., 1988), and λPRL2, a cDNA library made with mRNA from various Arabidopsis tissues and at different stages of development (Newman et al., 1994). All of these resources came from the Arabidopsis Biological Resource Center. Protocols for the manipulation of these libraries are described in the references cited above as well as by Schmidt et al. (1996) and Ausubel et al. (1998). These include procedures for library and clone maintenance, the isolation of DNAs, and library screening. Sizes of YAC and BAC clones were determined by pulsed-field gel electrophoresis (Schmidt et al., 1996).

The ends of YAC, BAC, and cosmid inserts were isolated for use both as probes and as markers in the chromosome walk. YAC left ends were isolated by plasmid rescue (Schmidt et al., 1996), and YAC right ends were isolated by pyrf complementation (Wright et al., 1997). BAC and cosmid end clones were isolated by inverse polymerase chain reaction (PCR) or by direct subcloning. Established methods were used for PCR, inverse PCR, and long PCR (Ausubel et al., 1998). For DNA gel blot and colony hybridizations, the cloned DNAs were labeled by random priming (Ausubel et al., 1998). For DNA gel blot and colony hybridizations, the cloned DNAs were labeled by random priming (Ausubel et al., 1998) and hybridized with filters containing YACs, BACs, or cosmids or with filters containing Arabidopsis genomic DNA. Hybridization and Arabidopsis DNA isolation procedures were as described by Wetzel et al. (1994).

The cloned YAC, BAC, and cosmid ends were used to generate cleaved amplified polymorphic sequence (CAPS) markers (Konieczny and Ausubel, 1993) for use in mapping the end clones with respect to im. CAPS markers also were generated from random EcoRI subfragments of YAC CIC7H1 cloned into pBluescript SK– (Stratagene, La Jolla, CA). Other polymorphic sequences that were used in the chromosome walk included LM117, a restriction fragment length polymorphism marker (Mindrinos et al., 1994), and two simple sequence length polymorphism markers, nga1111 and nga1139 (Bell and Ecker, 1994).

DNA sequencing was performed by the Iowa State University Nucleic Acids Facility. DNA sequences were analyzed using the Genetics Computer Group (Madison, WI) software package (Devereux et al., 1984). Phylogenetic analyses were conducted by the neighbor-joining algorithm using Phylib (Saitou and Nei, 1987; Felsenstein, 1993). The IM wild-type cDNA sequence has been submitted to the DDBJ, EMBL, and GenBank databases as accession number AF098072.

RNA Manipulations

Procedures for the isolation of im and wild-type RNA and for reverse transcriptase-PCR (RT-PCR) are described by Wetzel and Rodermel (1998). 5′ rapid amplification of cDNA ends (5′ RACE) was performed using the 5′ RACE system, version 2.0 (Gibco BRL).

ACKNOWLEDGMENTS

We thank the Arabidopsis Biological Resource Center for providing many of the reagents for the chromosome walk and G.P. Rédei for providing several im alleles. We also thank Renate Schmidt and Caroline Dean (j ohn Innes Centre, Norwich, UK) for providing, before publication, YAC clones that reside in the vicinity of im (Schmidt et al., 1996) and LeAnn Meehan for assistance in the chromosome walk. We very much appreciate the helpful comments made on our manuscript by three anonymous reviewers and by Dr. David Oliver and Dr. Marc Anderson (Iowa State University). This is journal paper No. J–18142 of the Iowa Agricultural Experiment Station, project 2987. This work was supported by funding from the U.S. Department of Energy (Grant No. DE-FG02-94ER20147) to S.R. and D.F.V.

Received July 22, 1998; accepted November 3, 1998.

REFERENCES

Umbach, A.L., and Siedow, J.N. (1996). The reaction of the soybean cotyledon mitochondrial cyanide-resistant oxidase with sul-
hydrul reagents suggests that α-keto acid activation involves the formation of a thiohemiacetal. J. Biol. Chem. 271, 25019–25026.

The *IMMUTANS* Variegation Locus of Arabidopsis Defines a Mitochondrial Alternative Oxidase Homolog That Functions during Early Chloroplast Biogenesis

Dongying Wu, David A. Wright, Carolyn Wetzel, Daniel F. Voytas and Steven Rodermel

Plant Cell 1999;11;43-55

DOI 10.1105/tpc.11.1.43

This information is current as of September 7, 2017

References	This article cites 72 articles, 25 of which can be accessed free at: /content/11/1/43.full.html#ref-list-1
eTOCs	Sign up for eTOCs at: http://www.plantcell.org/cgi/alerts/ctmain
CiteTrack Alerts	Sign up for CiteTrack Alerts at: http://www.plantcell.org/cgi/alerts/ctmain
Subscription Information	Subscription Information for *The Plant Cell* and *Plant Physiology* is available at: http://www.aspb.org/publications/subscriptions.cfm