The Arabidopsis HY2 Gene Encodes Phytochromobilin Synthase, a Ferredoxin-Dependent Biliverdin Reductase

Takayuki Kohchi, Keiko Mukougawa, Nicole Frankenberg, Munehisa Masuda, Akiho Yokota, and J. Clark Lagarias

a Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
b Section of Molecular and Cellular Biology, University of California, One Shields Avenue, Davis, California 95616

Light perception by the plant photoreceptor phytochrome requires the tetrapyrrole chromophore phytochromobilin (PFB), which is covalently attached to a large apoprotein. Arabidopsis mutants hy1 and hy2, which are defective in PFB biosynthesis, display altered responses to light due to a deficiency in photoactive phytochrome. Here, we describe the isolation of the HY2 gene by map-based cloning. hy2 mutant alleles possess alterations within this locus, some of which affect the expression of the HY2 transcript. HY2 encodes a soluble protein precursor of 38 kD with a putative N-terminal plastid transit peptide. The HY2 transit peptide is sufficient to localize the reporter green fluorescent protein to plastids. Purified mature recombinant HY2 protein exhibits PFB synthase activity (i.e., ferredoxin-dependent reduction of biliverdin IXα to PFB), as confirmed by HPLC and by the ability of the bilin reaction products to combine with apophytochrome to yield photoactive holophytochrome. Database searches and hybridization studies suggest that HY2 is a unique gene in the Arabidopsis genome that is related to a family of proteins found in oxygenic photosynthetic bacteria.

INTRODUCTION

Plants are exquisitely sensitive to their environment. Because they are sessile and use light as the energy source for photosynthesis, plants have developed well-refined photoreception and signaling systems to modulate their growth and development. The family of phytochromes, which are sensory photoreceptors for red and far-red lights, plays a key role in mediating responses to light quality, quantity, direction, and duration throughout plant development (Kendrick and Kronenberg, 1994; Quail et al., 1995; Furuya and Schäfer, 1996; Neff et al., 2000). Plant phytochromes are homodimers composed of ~125-kD subunits each with a thioether-linked phytochromobilin (PFB) prosthetic group (Lagarias and Rapoport, 1980). Phytochrome action depends on its ability to photointerconvert between the red light-absorbing form and the far-red-light-absorbing form, a property conferred by covalently bound PFB in holophytochrome.

Two pathways are involved in the biosynthesis of holophytochrome, one for the apoprotein, which is encoded by a small multigene family (e.g., PHYA-E in Arabidopsis) (Sharrock and Quail, 1989; Clack et al., 1994), and another for the synthesis of the PFB (Terry et al., 1993). Apophytochrome is synthesized in the cytosol, whereas PFB is synthesized entirely within the plastid compartment, followed by its release to the cytosol, where holophytochrome assembly occurs (Figure 1). Based on spectroscopic studies of purified phytochromes, in vitro bilin assembly studies with recombinant apophytochromes, and physiological analyses of chromophore-deficient mutants, PFB appears to be the immediate chromophore precursor of all higher plant and cryptophyte phytochromes (Terry et al., 1993; Terry, 1997).

PFB is synthesized from 5-aminolevulinic acid and shares many intermediates with the pathways of chlorophyll and heme biosynthesis (Elich and Lagarias, 1987; Elich et al., 1989). These analyses established that biliverdin IXα (BV) is a PFB precursor, suggesting the intermediacy of heme in the phytochrome biosynthetic pathway. Indeed, the first committed step of PFB biosynthesis is catalyzed by a ferredoxin-dependent heme oxygenase, which is encoded by the HY1 gene in Arabidopsis and by its ortholog in rice (Davis et al., 1999; Muramoto et al., 1999; Izawa et al., 2000). Ferredoxin-dependent heme oxygenases were first identified in red algae and cyanobacteria, in which they catalyze the oxygen-dependent conversion of heme to BV (Beale and Cornejo, 1984; Cornejo and Beale, 1988, 1997; Cornejo et al., 1998). BV, therefore, is the first committed intermediate in the biosynthetic pathways of PFB as well as
those of the phycobilins phycocyanobilin and phycoerythrobilin, which are precursors of the light-harvesting prosthetic groups of the phycobiliproteins in cyanobacteria, red algae, and cryptomonads (Beale, 1993). In plants, BV is subsequently reduced to 3Z-PΦB by the ferredoxin-dependent bilin reductase PΦB synthase, which has not yet been cloned (Terry and Lagarias, 1991; M.T. McDowell and J.C. Lagarias, unpublished data). Although 3Z-PΦB can serve as a functional precursor of the phytochrome chromophore, its facile isomerization to 3E-PΦB, which is also a precursor of the phytochrome chromophore, likely occurs in plants (Terry et al., 1995). Ferredoxin-dependent bilin reductases are also present in cyanobacteria and red algae, where they catalyze the conversion of BV to the phycobilins (reviewed in Beale, 1993). None of these bilin reductases has been cloned.

Our understanding of photomorphogenesis in plants has been aided greatly by the isolation of five classic photomorphogenetic mutants (hy1 to hy5) that are impaired in response to light (Koornneef et al., 1980). Photoreceptor-deficient mutants have proven to be powerful tools to analyze which photoreceptors mediate specific photomorphogenetic responses (Koornneef and Kendrick, 1994; Whitelam and Devlin, 1997). Phytochrome chromophore–deficient mutants, including hy1 and hy2 in Arabidopsis, yg-2 and aurea in tomato, pcd1 and pcd2 in pea, and pew1 and pew2 in Nicotiana plumbaginifolia, have often been used as phytochrome-deficient mutants (reviewed in Terry, 1997). The aurea mutant of tomato has been used widely for physiological studies of phytochrome, for the study of other photoreceptors, and to study phytochrome signaling (Becker et al., 1992; Bowler and Chua, 1994). Knowledge of the molecular basis of these mutations will help in the interpretation of physiological experiments with these mutants. Biochemical analyses have established that the hy1, pcd1, and yg-2 mutants are deficient at the step at which BV is synthesized from heme, whereas pcd2 and aurea mutants are unable to synthesize PΦB from BV (Terry and Kendrick, 1996; van Tuinen et al., 1996; Weller et al., 1996, 1997). The recent cloning of HY1 has provided valuable insight into the first committed enzyme of phytochrome chromophore biosynthesis, heme oxygenase (Davis et al., 1999; Muramoto et al., 1999).

Of the five classic photomorphogenetic mutants, only hy2 remains to be cloned. It is widely believed that HY2 encodes PΦB synthase. However, the observation that a hy2 mutant is partially “rescued” by BV treatment suggests other possibilities (Parks and Quail, 1991). Although it is similar to hy1 mutants, the chlorophyll-deficient phenotype of hy2 mutants is typically less severe (Koornneef et al., 1980; Chory et al., 1989). The gene identification of HY2 in Arabidopsis should help to resolve these paradoxes. In this study, we describe the molecular basis for the phytochrome-deficient phenotype in the hy2 mutant of Arabidopsis. We show that the HY2 gene encodes PΦB synthase, a ferredoxin-dependent BV reductase that is responsible for the final step in phytochrome chromophore biosynthesis in plastids. This work has enabled us to identify other members of the HY2-related, ferredoxin-dependent bilin reductase family in phycobiliprotein-producing photosynthetic organisms (N. Frankenberg, K. Mukougawa, T. Kohchi, and J.C. Lagarias, unpublished data).

RESULTS

Fine Mapping Localizes the HY2 Gene to Two Overlapping Bacterial Artificial Chromosome Clones

We used a positional cloning strategy to isolate the HY2 gene, which previously had been mapped to chromosome 3. Because the hy2 long hypocotyl phenotype is easy to score in seedlings, the HY2 locus has served as a useful landmark for classic mapping. For fine mapping, we crossed the hy2-1 mutant of Landsberg erecta (Le) ecotype to the wild-type Columbia (Col) ecotype, and segregating F2 populations with the hy2 phenotype were used for DNA preparation. First, we prepared DNA from ~400 plants to perform genetic mapping of hy2 using cleaved amplified polymorphic sequence (CAPS) markers (Konieczny and Ausubel, 1993) that we developed and that are available in the database at the Arabidopsis Information Resource (TAIR; http://www.arabidopsis.org/maps/CAPS_Ch3.html). With ~400 plants, HY2 was mapped to an interval of ~360 kb between positional markers cMLP3E1 and cF3L24 (Figure 1), indicating that recombination frequency in this region was much lower than expected. Therefore, we increased the size of the mapping population to ~2000 plants. This approach enabled us to map the HY2 locus to an interval of ~66 kb between the markers cMZB10 and cF3L24 (Figure 2).
Isolation of the Arabidopsis HY2 Gene

During these mapping studies, the sequences of two bacterial artificial chromosome clones, MZB10 and F3L24, spanning the HY2 locus genetically defined above, were deposited in the GenBank database (accession numbers AC009326 and AC011436, respectively). There are at least 21 putative genes in the region between the closest recombination. We screened HY2 candidate genes based on the following expectations. First, HY2 should be categorized as an unknown or putative gene, because neither gene nor protein sequences of any ferredoxin-dependent bilin reductase were known. Second, HY2 should possess a plastid transit peptide, because enzymatic activity for PFB synthase was detected in plastids (Terry and Lagarias, 1991). Third, weak sequence similarity between HY2 and an unidentified open reading frame (ORF) in fully sequenced cyanobacterial genomes might be detectable, because HY2-related bilin reductase activities have been reported in cyanobacteria (Cornejo and Beale, 1997). The predicted amino acid sequences for all 22 genes in the HY2 region were used for TBLASTN (Altschul et al., 1990) and CHLOROP (Emanuelsson et al., 1999; http://www.cbs.dtu.dk/services/ChloroP/) analyses. By these criteria, one of these genes with two distinct annotations, MZB10.18 (GenBank accession number AC009326-18) or F3L24.1 (GenBank accession number AC0011436-1), appeared to be a strong candidate for HY2.

The HY2 Gene Is Identified by DNA Sequences of Wild-Type and Mutant Alleles

To help identify the HY2 gene, RNA gel blot analysis of wild-type and hy2 mutant seedlings was performed using the

During these mapping studies, the sequences of two bacterial artificial chromosome clones, MZB10 and F3L24, spanning the HY2 locus genetically defined above, were deposited in the GenBank database (accession numbers AC009326 and AC011436, respectively). There are at least 21 putative genes in the region between the closest recombinations. We screened HY2 candidate genes based on the following expectations. First, HY2 should be categorized as an unknown or putative gene, because neither gene nor protein sequences of any ferredoxin-dependent bilin reductase were known. Second, HY2 should possess a plastid transit peptide, because enzymatic activity for PFB synthase was detected in plastids (Terry and Lagarias, 1991). Third, weak sequence similarity between HY2 and an unidentified open reading frame (ORF) in fully sequenced cyanobacterial genomes might be detectable, because HY2-related bilin reductase activities have been reported in cyanobacteria (Cornejo and Beale, 1997). The predicted amino acid sequences for all 22 genes in the HY2 region were used for TBLASTN (Altschul et al., 1990) and CHLOROP (Emanuelsson et al., 1999; http://www.cbs.dtu.dk/services/ChloroP/) analyses. By these criteria, one of these genes with two distinct annotations, MZB10.18 (GenBank accession number AC009326-18) or F3L24.1 (GenBank accession number AC0011436-1), appeared to be a strong candidate for HY2.

The HY2 Gene Is Identified by DNA Sequences of Wild-Type and Mutant Alleles

To help identify the HY2 gene, RNA gel blot analysis of wild-type and hy2 mutant seedlings was performed using the

(A) Map of the region of chromosome 3 containing HY2. Two distinct mapping populations were screened, and mapping results with molecular markers are summarized schematically, indicating that HY2 lies in a region 66 kb in length. Markers starting with the letter c are CAPS markers developed during this study. DNA sequence information for bacterial artificial chromosomes (BACs) MZB10 and F3L24 is available in GenBank/EMBL/DDBJ. The HY2 gene structure with mutations is illustrated at the bottom. Exons are depicted as dark boxes and thick lines, which reflect coding regions and 5’/3’ untranslated regions, respectively. Dotted lines indicate introns.

(B) Genomic sequence of HY2 and the deduced protein sequence from the Columbia (Col) ecotype. Uppercase letters represent exons determined by sequence analysis of HY2 cDNAs. Introns and spacer sequences are indicated with lowercase letters. The stop codon is double underlined. Single nucleotide polymorphisms in both Ler and Wassilewskija (Ws) ecotypes include the following: inserted T (at nucleotide 234), G364T conversion with amino acid change to Asn, and G1182A conversion (silent). Single nucleotide polymorphisms in the Ler ecotype only include the following: C515A (in intron), G884A (silent), C1145T (in intron), and G1717A (in intron). The single nucleotide polymorphism in Ws ecotype only is C1910T (silent).
cDNA for MZB10.18/F3L24.1 as a probe. Because the hy2 phenotype is readily observed in seedlings, we analyzed the accumulation of transcripts in Arabidopsis seedlings (Figure 3). Transcripts were detected in the wild type of three ecotypes tested. The slow migration of mRNA of Col was verified as a gel artifact (data not shown). RNA gel blotting showed that the transcript levels were decreased severely in the hy2-1, hy2-106, and hy2-107 mutants and were decreased slightly in other mutant lines. Consequently, we focused our attention on the MZB10.18/F3L24.1 gene. To determine if mutations were present in the MZB10.18/F3L24.1 gene in hy2 mutants, DNA fragments corresponding to the region from the end of the upstream gene to the beginning of the downstream gene from various hy2 alleles were amplified by polymerase chain reaction (PCR). The nucleotide sequences were determined directly from the PCR products. In all hy2 alleles tested, nucleotide substitutions or deletions were detected (Figure 2). Complementation of hy2-1 was observed by introducing the construct containing the WT genomic fragment of the MZB10.18/F3L24.1 region (data not shown). Based on these data and biochemical data presented below, we conclude that locus MZB10.18/F3L24.1 corresponds to the HY2 gene.

As a result of the conflict in annotation of the HY2 gene in MZB10.18 and F3L24.1 (i.e., the former encodes a protein of 273 amino acids, and the latter encodes a protein of 329 amino acids), we sought to verify experimentally the structure of 273 amino acids, and the latter encodes a protein of 329 amino acids, and the latter encodes a protein of 329 amino acids. The HY2 gene has no predicted transmembrane helices, which is also consistent with the observation that oat P450 synthase is a soluble protein (M.T. McDowell and J.C. Lagarias, unpublished data).

The HY2 Protein Is Related to a Family of Cyanobacterial Proteins

Based on cDNA sequence analysis, the HY2 protein contains 329 residues with a calculated molecular mass of 38.1 kD. At its N terminus, the HY2 protein sequence is rich in serine, with few acidic residues (six serine and one aspartic acid among 45 residues), which suggests a possible transit peptide for localization to plastids (Gravel and von Heijne, 1990). The second amino acid after the initiation methionine is alanine, which is often observed in plastid transit peptides. The program CHLOROP was also used to predict the transit peptide of HY2, and it indicated that the first 45 amino acid residues of the HY2 protein form a chloroplast transit peptide (Emanuelsson et al., 1999; http://www.cbs.dtu.dk/services/Chlorop/). The calculated molecular mass of the mature HY2 protein is 33.0 kD and its predicted pl is 5.66, which are similar to those of P450 synthase purified from oat seedlings (M.T. McDowell and J.C. Lagarias, unpublished data). The HY2 protein has no predicted transmembrane helices, which is also consistent with the observation that oat P450 synthase is a soluble protein (M.T. McDowell and J.C. Lagarias, unpublished data).
Isolation of the Arabidopsis HY2 Gene

Using the HY2 protein sequence as a query sequence, we performed an iterative PSI-BLAST search of the nonredundant GenBank/EMBL database (http://www.ncbi.nlm.nih.gov/blast/psiblast.cgi) by using default search parameters (Altschul et al., 1997). Surprisingly, no HY2-related gene was identified by this search in the nearly complete Arabidopsis genome. In contrast, this search identified HY2-related sequences from two marine cyanobacteria, Prochlorococcus marinus sp SS120 (EMBL accession numbers CAB95700.1 and CAB95701.1) and Synechococcus sp WH8020 (SWISS-PROT accession numbers Q02189 and Q02190), and a related protein sequence from the cyanobacterium Synechocystis sp PCC 6803 gene (cyano base locus slr0116; see http://www.kazusa.or.jp/cyano/cyano.html). Database accession numbers are AB045112 for HY2 (DDBJ), Q02189 for YCP2_SYNPy (SWISS-PROT), Q02190 for YCP3_SYNPy (SWISS-PROT), CAB95700.1 for YHP2_PROMA (EMBL), CAB95701.1 for YHP3_PROMA (EMBL), and S76709 for slr0116 (Protein Information Resource). Asterisks are indicated every 20 residues.

Figure 4 shows an optimized multiple sequence alignment of HY2 and HY2-related cyanobacterial proteins using the programs CLUSTALW (Higgins et al., 1996), MEME to guide hand alignments (http://meme.sdsc.edu/meme/website/), and GENE-DOC for highlighting (http://www.psc.edu/biomed/genedoc). As expected, the HY2-related cyanobacterial proteins lack the putative plastid transit peptide sequence found at the N terminus of HY2. Pairwise sequence identities between HY2 and the cyanobacterial ORFs are quite low (<20%), although the similarities between YCP2_SYNPy and YHP2_PROMA and between YCP3_SYNPy and YHP3_PROMA suggest that these pairs of proteins have similar functions. That the mutation in the hy2-1 and hy2-104 alleles (P128L) lies in a conserved proline residue is consistent with a critical role of this residue in the enzyme’s structure. Proline residues are typically involved in cis-peptide bonds, which occur at β-turns in...
proteins. Examination of the amino acid alterations in the two other missense alleles, G181R in \textit{hy2-101} and R252Q in \textit{hy2-103}, reveals that neither mutation corresponds to a strongly conserved residue in this protein family.

The HY2 Protein Is Localized to the Plastid

The N terminus of HY2 has a stretch of 45 amino acids with features of a chloroplast transit peptide. To determine whether this peptide is a functional plastid-targeting sequence, we fused the transit peptide-coding region of HY2 to a modified gene of green fluorescent protein (GFP) from jellyfish under the control of modified cauliflower mosaic virus 35S promoter (Chiu et al., 1996). The construct was introduced into onion skin cells and tobacco leaves by bombardment with DNA-coated particles, and transient expression was analyzed using confocal laser scanning microscopy. Although a control construct without the putative transit peptide showed GFP fluorescence throughout the cytoplasm and the nucleus of onion cells (Figure 5A), clear localization of GFP fluorescence to small dots, most likely plastids, was observed when the putative transit peptide was fused to GFP (Figure 5B). For better visualization, we also introduced the construct into tobacco leaves, where the chloroplasts are well developed in guard cells. GFP fluorescence was localized exclusively in oval structures (Figure 5C) that match the red autofluorescence from the chlorophyll of the chloroplasts (Figure 5D), demonstrating that the fusion protein is efficiently targeted to chloroplasts. This finding confirms the presence of a functional transit peptide and implies that the \textit{HY2} gene product is localized in the chloroplast.

Recombinant HY2 Exhibits PFB Synthase Activity

The HY2 protein lacking the transit peptide \textit{mHY2} was synthesized in \textit{Escherichia coli} as a fusion protein with glutathione S-transferase (GST) and purified by affinity chromatography, as described in Methods. The GST tag was removed by site-specific protease digestion. A second round of affinity chromatography yielded protein at \textasciitilde90\% homogeneity. Figure 6 shows SDS-PAGE results of the purification and processing of the protein. One liter of bacterial culture yielded \textasciitilde1 mg of recombinant protein. The molecular mass of the Arabidopsis \textit{mHY2} deduced from the cDNA is 33 kD. However, the cloning and expression strategy for the \textit{mHY2} cDNA using pGEX-6P-1 were responsible for an additional five N-terminal amino acids (GPLGS) after protease treatment.

To determine whether \textit{mHY2} has PFB synthase activity, its ability to reduce BV to PFB was first assessed with a "coupled" holophytochrome assembly assay in which the reaction products were incubated with recombinant cyanobacterial phytochrome 1 (Cph1) apoprotein (Yeh et al., 1997). Figure 7 shows a phytochrome difference spectrum obtained after incubation of apoCph1 with the bilin products from a PFB synthase assay of a crude cell-free bacterial extract expressing GST-mHY2. The difference spectrum has a peak at 676 nm and a valley at 724 nm, which is consistent with a PFB-Cph1 adduct (Yeh et al., 1997). To ensure that this activity was not due to a component of the crude Escherichia lysate, the ability of purified \textit{mHY2} to reduce BV to PFB was analyzed using the coupled assembly assay as well as an HPLC assay. A phytochrome difference spectrum identical to that shown in Figure 7 was obtained (data not shown). The HPLC results of the PFB synthase assay mixture are shown in Figure 8. After incubation of HY2 for 30 min under standard PFB synthase assay conditions, all of the BV was converted to PFB. Interestingly, both 3Z- and 3E-PFB isomers were produced, although the relative amount of the 3E-PFB isomer varied for different HY2 samples and may be an artifact of the presence of residual glutathione (N. Frankenberg and J.C. Lagarias, unpublished data).
DISCUSSION

The hy2 mutant of Arabidopsis is one of five classic long hypocotyl mutants first identified by Koornneef et al. (1980). That the hy2 mutant is photomorphogenetically impaired due to a phytochrome deficiency has been well documented by physiological and photobiological analyses (Koornneef et al., 1980; Chory et al., 1989; Parks and Quail, 1991; Goto et al., 1993). Parks and Quail (1991) showed that the long hypocotyl phenotype of the hy1 and hy2 mutants was in part “rescued” by BV feeding and suggested that these mutants have lesions in the phytochrome chromophore biosynthetic pathway. Indeed, HY1 encodes a plastid-localized heme oxygenase that catalyzes the cleavage of heme to form BV (Davis et al., 1999; Muramoto et al., 1999). The present studies establish that HY2 encodes PFB synthase, a plastid-localized enzyme responsible for the ferredoxin-dependent conversion of BV to PFB, the immediate precursor of the phytochrome chromophore.

Based on the presence of a functional plastid-targeting sequence in the HY2 protein, we can confidently conclude that the entire pathway of PFB biosynthesis occurs within plastids. Nevertheless, the possibility of an alternative pathway in other subcellular compartments cannot be dismissed entirely. In this regard, there are three other heme oxygenase genes besides HY1 in the Arabidopsis genome whose products may play a role in an alternative pathway (M. Masuda, T. Muramoto, and T. Kohchi, unpublished data). However, our database searches revealed no other gene in the Arabidopsis genome that shows statistically significant similarity to HY2. Although a weak similarity between HY2 and a ferredoxin-dependent bilin reductase involved in chlorophyll catabolism, red chlorophyll catabolite reductase, was revealed by profile analysis (N. Frankenberg, K. Mukougawa, T. Kohchi, and J.C. Lagarias, unpublished data), red chlorophyll catabolite reductase does not catalyze the reduction of BV to PFB (Wüthrich et al., 2000; N. Frankenberg and J.C. Lagarias, unpublished results). Therefore, it appears that HY2 is the only PFB synthase gene in Arabidopsis.

Physiological comparisons of the hy1 and hy2 mutants indicate that hy1 plants display more severe phytochrome-deficient phenotypes (Koornneef et al., 1980; Chory et al., 1989). These observations are somewhat surprising in view of the apparent uniqueness of the HY2 gene and the existence of multiple HY1-related proteins in the Arabidopsis genome (M. Masuda, T. Muramoto, and T. Kohchi, unpublished data). However, this may reflect the strength of the hy1 and hy2 alleles examined. In this regard, the partial rescue of the hy2-1 mutant treated with BV (Parks and Quail, 1991) can be explained by the hypothesis that the P128L missense mutation affords a partially active enzyme with a lower affinity for BV. Alternately, it is possible that BV might be converted to PFB by an enzyme unrelated to HY2 in Arabidopsis. Phytochrome chromophore biosynthetic mutants have been identified in other plant species (Terry, 1997). In all cases, two classes of mutants have been identified: those that are deficient in...
heme oxygenase and those that are deficient in PΦB synthase activity (van Tuinen et al., 1996; Weller et al., 1997). The availability of HY1- and HY2-specific cDNA probes and specific antibodies to both enzymes will facilitate experiments to study the regulation of phytochrome chromophore biosynthesis. With such probes, several key questions can be addressed. Are the two enzymes expressed coordinately in all tissues? Is their expression spatially and temporally regulated? Do HY1 and HY2 proteins form a dual enzyme complex in the plastid that channels the conversion of heme to PΦB? Does the expression of HY1 affect HY2 expression and vice versa?

The molecular cloning of HY2 has provided a breakthrough in our knowledge of bilin biosynthesis in general. Our bioinformatic analyses reveal that HY2 is related to a number of cyanobacterial genes of unknown function (Figure 4). Indeed, we hypothesize that these HY2-related proteins are enzymes involved in the biosynthesis of the chromophore precursors of the light-harvesting phycobiliproteins phycocyanobilin and phycoerythrobilin. As might be expected for enzymes with different substrate/product specificities, these proteins are highly diverged from HY2 (~20% sequence identity). The levels of identity between these proteins and HY2, which are highlighted in Figure 4, likely reflect residues involved in overall protein folding and/or ferredoxin interaction that are common to the entire family of enzymes. We demonstrate that these HY2-related proteins are members of a growing family of ferredoxin-dependent bilin reductases with different double bond specificities (N. Frankenberg, K. Mukougawa, T. Kohchi, and J.C. Lagarias, unpublished data).

The pathway for phytochrome chromophore biosynthesis shown in Figure 1 has been clearly documented. Now that the two key genes of the phytochrome chromophore biosynthetic pathway have been cloned, we intend to elucidate how bilin biosynthesis is regulated throughout the plant, a process that is critical to the plant’s ability to respond to light. The possible role of bilins as second messengers, which was raised by recent studies of transgenic plants expressing mammalian biliverdin reductase (Montgomery et al., 1999), also will be addressed by manipulating the expression of HY1 and HY2 genes within different cells and tissues of the plant. Finally, it will be of particular interest to address the relationship of phytochrome chromophore biosynthesis and chlorophyll biosynthesis, not only because they share common biosynthetic intermediates but to determine how each pathway influences the other.
METHODS

Plant Materials

Arabidopsis thaliana ecotypes Columbia (Col), Landsberg erecta (Ler), and Wassilewskija (Ws) were obtained from our laboratory stocks. Mutant strains used in this work were obtained from Maarten Koornneef for hy2-1. (distrusted as CS6/6 by the Arabidopsis Biological Stock Center, Columbus, OH; in Ler ecotype); from Jason Reed for hy2-101 (EMS98/73-E isolated originally by J. Reed; in Col ecotype); hy2-102 (EMS19S isolated by J. Reed; in Col ecotype); hy2-103 (IAA-7 isolated by Allison Wilson; in Col ecotype), hy2-104 (IAA-12 isolated by A. Wilson; in Col ecotype), hy2-105 (α-9-10 iso-

The hy2-1 mutant was outcrossed with wild-type Col ecotype, and the mapping population was selected from F2 families with the long hypocotyl phenotype. Genomic DNA was prepared using a protocol described by Edwards et al. (1991). We used cleaved amplified polymorphic sequence (CAPS) markers between Col and Ler (Konieczny and Ausubel, 1993), two CAPS markers (C6 and manganese-super-oxide dismutase) in the Arabidopsis database, and seven new CAPS markers developed during this study. Primer sequences for polymerase chain reaction (PCR) amplification are listed here with the markers developed during this study.

Sequence Analysis of the HY2 Locus

A pair of primers (5'-CGTTGCTCCTGGAAGACT-3' and 5'-CAATCTTCGTCAAATGCAGA-3') was used to amplify 1.98 kb fragments of the MZB10.18 region from mutants and their corresponding wild-type plants. The PCR products were subjected directly to a cycle-sequencing protocol with several primers, and reactions were analyzed on an ABI373S sequencing apparatus (Applied Biosystems, Foster City, CA).

Isolation of HY2 cDNA

A cDNA library was constructed by K. Ando (Nara Institute of Science and Technology) from Col seedlings in JZAPII (Stratagene) according to the manufacturer’s instructions. The DNA fragment containing MZB10.18 described above was used as a probe to screen ~300,000 cDNA clones by plaque hybridization. Several cDNA plasmids were recovered by in vivo excision according to the manufacturer’s instructions.

RNA Isolation and Analysis

RNA was isolated from 1-week-old whole Arabidopsis seedlings by the acid guanidinium thiocyanate-phenol-chloroform extraction method using Isogen (Nippon Gene, Tokyo, Japan). Total RNA (10 μg/lane) was electrophoresed on a 1.2% formaldehyde/agarose gel and transferred to a nylon membrane (Hybond-N; Amersham Corp.). Prehybridization and hybridization were then performed in Church hybridization solution (Church and Gilbert, 1984) using radioactive probes (3 x 10^6 to 5 x 10^6 cpm/mL). A fragment of cDNA produced by EcoRI and XhoI digestion was used as a hybridization probe. Filters were washed under highly stringent conditions three times with 1 x SSC (0.15 M NaCl and 0.015 M sodium citrate), 0.1% SDS at room temperature, and twice with 0.2 x SSC, 0.1% SDS at 65°C for 15 min. To show equal loading of RNA, an rRNA probe was used for hybridization.

Subcellular Localization Experiment with Green Fluorescent Protein Fusion

The coding region of HY2 for the putative transit peptide and flanking amino acid residues (amino acids 1 to 62) isolated by PCR was cloned into pTH2XA, a modified green fluorescent protein (GFP) vector derived from 3SSs-gFP-S65T (Chiu et al., 1996). In pTH2XA, five glycine residues were included at the fusion junction to GFP (M. Takemura, unpublished data). The construct, which can express the HY2 transit peptide fused to the N terminus of a modified GFP gene under the control of the cauliflower mosaic virus 3S promoter, was introduced into onion bulbs and tobacco leaves. The conditions of bombardment were the same as those described by Muramoto et al. (1999). Transient expression was observed after overnight incubation using confocal laser scanning microscopy (LSM510; Carl Zeiss, Jena, Germany).

Construction of the pGEX-HY2 Expression Vector

mHY2, the mature HY2 gene without the predicted chloroplast transit peptide, was subcloned into the *Escherichia coli* expression vector pGEX-6-P1 (Amersham Pharmacia Biotech, Piscataway, NJ) to produce pGEX-mHY2. *mHY2* was amplified using the primers mHY2BglII and (5'-GAAGATCTGCCTCTGCTGCTGATAGG-3') and HY2Smalrev. (5'-TCCCCCGGATTAGCGATAATGGTTCCTGTGTAACC-3'), which contained BglII and Smal sites (underlined), respectively, and was cloned into BamHI-Smal-digested pGEX-6-P1 to give pGEX-mHY2. The integrity of the construct was verified by restriction analysis and complete DNA sequencing of the insert (Davis Sequencing, Inc., Davis, CA). The constructed vector contains the mHY2 sequence placed 3' to the glutathione S-transferase (GST) gene of *Schistosoma japonicum* under the control of a Ptac promoter. A recognition sequence for PreScission protease, which is also a GST fusion protein, is located upstream of mHY2. Proteolytic cleavage yields the native Arabidopsis mHY2 with the five-amino acid N-terminal extension GPLGS.
Expression and Purification of Recombinant mHY2

The *Escherichia coli* strain DH5α containing pGEX-mHY2 was grown at 37°C in 500-mL batches of Luria-Bertani medium containing ampicillin (100 μg/mL) to an OD₆₀₀ of 0.6. Cultures were induced by the addition of 1 mM isopropylthio-β-galactoside and incubated for an additional 3 hr, and bacteria were harvested subsequently by centrifugation. The bacterial pellet from 3 liters of culture was resuspended in 20 mL of lysis buffer (50 mM Tris-HCl, pH 8.0, 100 mM NaCl, 0.05% Triton X-100, 1 mM DTT, 2 mM benzamidine, 2 mM PMSF, 2.0 μg/mL leupeptin, and 3 μg/mL pepstatin A) and disrupted with a French press (3 × 20,000 p.s.i.). Cell debris were removed by centrifugation for 30 min at 100,000g. The resulting supernatant was loaded directly onto a glutathione-agarose (Sigma) column (1 × 3 cm) that had been equilibrated with 5 column volumes of PBS. Unbound protein was removed by washing the column with 5 column volumes of PBS. GST-mHY2 fusion protein was eluted with 50 mM Tris-HCl, pH 8.0, containing 10 mM reduced glutathione. GST-mHY2-containing fractions were pooled and dialyzed overnight against cleavage buffer (50 mM Tris-HCl, pH 7.0, 100 mM NaCl, 1 mM EDTA, and 1 mM DTT). Digestion of the fusion protein was performed by adding 2 units of PreScission protease (Amersham Pharmacia Biotech) per 100 μg of fusion protein and incubating at 4°C for 5 hr. Removal of uncleaved fusion protein and excised GST tag was achieved by loading the digestion mixture onto a second glutathione-agarose column (1 × 3 cm). Recombinant mHY2 was detected in the flow through, analyzed by SDS-PAGE, and concentrated using Centriprep-10 concentrator devices (Amicon, Beverly, MA). One liter of bacterial culture yielded 1 mg of purified protein.

Determination of Protein Concentration

Protein concentration was determined using the method of Bradford (1976) or by absorption at 280 nm for purified mHY2, where 1 absorbance unit represents 0.64 mg/mL mHY2 (Gill and von Hippel, 1989).

PΦB Synthase Activity Assay

All enzymes used for PΦB synthase assay were obtained from Sigma. For a 1-mL assay of PΦB synthase, the protein fraction to be assayed was diluted into 50 mM Tes-KOH, pH 7.3, containing an NADPH-regenerating system (6.5 mM glucose-6-phosphate, 0.82 mM NADP⁺, 1.1 units/mL glucose-6-phosphate dehydrogenase type XII from Torula yeast [EC 1.1.1.49]), a ferredoxin-reducing system (4.6 μM spinach ferredoxin, 0.025 units/mL spinach ferredoxin: NADP⁺ oxidoreductase [EC 1.18.1.2]), and 10 μM BSA (fraction V, heat shock) (M.T. McDowell and J.C. Lagarias, unpublished data). Glucose-6-phosphate and NADP⁺ were prepared as 100- and 25-mM stocks, respectively, in water; both were stored at 4°C. The glucose-6-phosphate stock was filter sterilized before storage. Glucose-6-phosphate dehydrogenase was prepared as a 500-unit/mL stock in 5 mM sodium citrate, pH 7.4, and stored at 4°C. Spinach ferredoxin:NADP⁺ oxidoreductase was prepared as a 10-unit/mL stock with sterile water and stored at 4°C. BSA was made up as 100 μM stock in 0.1 M potassium phosphate buffer, pH 7.4, and stored at either 4 or −20°C. The reaction was initiated by the addition of 5 μM (final concentration) purified biliverdin IXα (BV) (McDonagh and Palma, 1980) in 5 μL of DMSO. Assay mixtures were incubated in a 28°C water bath under green safe light or under subdued light for the desired amount of time. The assays were stopped by placing them on ice. Product analysis used a direct HPLC assay or a coupled assay after the addition of recombinant cyanobacterial phytochrome 1 (Cph1) apoprotein and difference spectroscopy (see below).

Direct HPLC Assay

For the quantitative analysis of PΦB synthase activity, assay mixtures (outlined above) were loaded onto a Waters (Milford, MA) C₁₈ Sep-Pak Light (catalog No. WAT023501) preconditioned as follows: 3-mL wash with acetonitrile to wet the Sep-Pak, 3-mL wash with MilliQ water, and 3-mL wash with 50 mM 4-methylmorpholine/glacial acetic acid, pH 7.7. After the sample was loaded onto the Sep-Pak, it was washed with 3 mL of 4-methylmorpholine/glacial acetic acid, pH 7.7, followed by 3 mL of 0.1% (v/v) trifluoroacetic acid. The Sep-Pak was then eluted with 2 mL of 100% acetonitrile. The eluate was dried using a Speed-Vac lyophilizer. The dried samples were analyzed by HPLC. Samples were first dissolved in 10 μL of DMSO and then diluted with 200 μL of the HPLC mobile phase (acetonitrile:20 mM formic acid [50:50, v/v]). After the samples were dissolved, they were centrifuged briefly, passed through a 0.45-μm polytetrafluoroethylene syringe filter, and chromatographed using a Varian (Palo Alto, CA) 5000 liquid chromatograph. The column eluate was monitored at 380 nm using a Varian UV100 flow-through absorbance detector. Peak areas were quantitated using a 3365 Chemstation II (Hewlett-Packard, Waldbronn, Germany). The HPLC column used for all of the analyses was a Phenomenex (Torrance, CA) Ultragel 5-μm ODS (20) 4.6 × 250-mm analytical column with a 4.6 × 30-mm guard column of the same material. The mobile phase used with this column was acetone:20 mM formic acid (50:50, v/v). The flow rate was 0.8 mL/min.

Coupled Difference Spectral Assay

An alternative to the direct analysis of PΦB synthase activity was the coupled, or indirect, assay. This assay was based on the method outlined previously (Terry and Lagarias, 1991). The assay described above for PΦB synthase was performed as before, but instead of working up the sample by Sep-Pak, an aliquot of recombinant apophytocrome (Cph1 from Synechocystis sp PCC 6803) was added to the sample. The sample was incubated for an additional 20 to 30 min at room temperature under green safe light, and then a difference spectrum was taken. The method for difference spectroscopy was described previously (Terry and Lagarias, 1991).

ACKNOWLEDGMENTS

We thank the Arabidopsis Biological Resource Center and Drs. M. Koornneef (Wageningen Agricultural University, Wageningen, The Netherlands), J.W. Reed (University of North Carolina, Chapel Hill), and N.-H. Chua (Rockefeller University, New York) for providing hy2 seed. We also thank Drs. R. Finkelstein (University of California, Santa Barbara), Y. Nakamura, and S. Tabata (Kazusa DNA Research Institute, Chiba, Japan) for sharing mapping information regarding the H2 locus. We are grateful to Drs. M. Aida, T. Shikanai, and M. Takemura (Nara Institute of Science and Technology) for their technical suggestions and to Ms. E. Harada and T. Iwamae for technical
assistance. This work was supported in part by Research for the Future Program Grant 00L01605 and by a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Sciences, Sports, and Culture of Japan to T.K. and in part by United States Department of Agriculture Competitive Research Grant Initiative AMD-9801768 to J.C.L. N.F. was supported by a fellowship from the Deutsche Forschungsgemeinschaft (FR 1487/1-1).

Received August 18, 2000; accepted November 9, 2000.

REFERENCES

The Arabidopsis *HY2* Gene Encodes Phytochromobilin Synthase, a Ferredoxin-Dependent Biliverdin Reductase

Takayuki Kohchi, Keiko Mukougawa, Nicole Frankenberg, Munehisa Masuda, Akiho Yokota and J. Clark Lagarias

Plant Cell 2001;13:425-436
DOI 10.1105/tpc.13.2.425

This information is current as of August 16, 2017

<table>
<thead>
<tr>
<th>References</th>
<th>This article cites 49 articles, 20 of which can be accessed free at: /content/13/2/425.full.html#ref-list-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>eTOCs</td>
<td>Sign up for eTOCs at: http://www.plantcell.org/cgi/alerts/ctmain</td>
</tr>
<tr>
<td>CiteTrack Alerts</td>
<td>Sign up for CiteTrack Alerts at: http://www.plantcell.org/cgi/alerts/ctmain</td>
</tr>
<tr>
<td>Subscription Information</td>
<td>Subscription Information for The Plant Cell and Plant Physiology is available at: http://www.aspmb.org/publications/subscriptions.cfm</td>
</tr>
</tbody>
</table>