Calmodulins and Calcineurin B–like Proteins: Calcium Sensors for Specific Signal Response Coupling in Plants

Sheng Luan,a,1 Jörg Kudla,b Manuel Rodriguez-Concepcion,c Shaul Yalovsky,d and Wilhelm Gruissem,a,1

a Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
b Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany
c Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Martí i Franquès 1-7, 08028 Barcelona, Spain
d Department of Plant Sciences, Tel Aviv University, Tel Aviv, Israel
e Institute of Plant Sciences, Swiss Federal Institute of Technology, ETH Zentrum, CH-8092 Zurich, Switzerland

INTRODUCTION

Calcium Signaling and Calcium Sensors: A General Paradigm

Many extracellular signals, including light, biotic, and abiotic stress factors, elicit changes in cellular Ca^{2+} concentration in plants (Trewavas and Knight, 1994; Bush, 1995; Braam et al., 1997; McInish et al., 1997; Sanders et al., 1999; Rudd and Franklin-Tong, 2001). In addition, many intrinsic growth and developmental processes, such as elongation of root hairs and pollen tube formation, are controlled by Ca^{2+} transients (Felle and Hepler, 1997; Holdaway-Clarke et al., 1997; Wymer et al., 1997). Because different signals often elicit distinct and specific cellular responses, it is important to determine how cells can distinguish the Ca^{2+} signals produced by different stimuli. Recent studies in both animal and plant cells suggest that a Ca^{2+} signal is presented not only by the concentration of Ca^{2+} but also by its spatial and temporal information (Franklin-Tong et al., 1996; Holdaway-Clarke et al., 1997; Dolmetsch et al., 1998; Li et al., 1998; Trewavas, 1999). A combination of changes in all Ca^{2+} parameters produced by a particular signal is referred to as a “Ca^{2+} signature.” Although such Ca^{2+} signatures may partially explain the specificity of cellular responses triggered by a particular stimulus, the molecules that “sense” and “interpret” the Ca^{2+} signals provide additional specificity to the coupling of Ca^{2+} parameters to cellular responses.

If Ca^{2+} signaling pathways are composed of “molecular relays,” the first “runner” after Ca^{2+} would be a Ca^{2+} “sensor,” which monitors temporal and spatial changes in Ca^{2+} concentrations. Such sensors often are proteins that bind Ca^{2+} and change their conformation in a Ca^{2+}-dependent manner. Several families of Ca^{2+} sensors have been identified in higher plants. Perhaps the best known is calmodulin (CaM) and CaM-related proteins, which typically contain four elongation factor (EF)-hand domains for Ca^{2+} binding (Zielinski, 1998; Snedden and Fromm, 2001). A new family of Ca^{2+} sensors from Arabidopsis consists of proteins similar to both the regulatory B-subunit of calcineurin and the neuronal Ca^{2+} sensor in animals (Liu and Zhu, 1998; Kudla et al., 1999). We refer to these plant Ca^{2+} sensors as calcineurin B–like (CBL) proteins (Kudla et al., 1999). The third major class is exemplified by the Ca^{2+}-dependent protein kinases (CDPKs), which contain CaM-like Ca^{2+} binding domains and a kinase domain in a single protein (Roberts and Harmon, 1992; Harmon et al., 2000). The CDPK proteins are unique because they function both as Ca^{2+} sensors and as effectors of their Ca^{2+}-sensing activity.

CaM and CBL are small proteins that contain multiple Ca^{2+} binding domains but lack other effector domains, such as the kinase domain in CDPKs. To transmit the Ca^{2+} signal, CaMs and CBLs interact with target proteins and regulate their activity. CaM target proteins have been identified in higher plants and include protein kinases, metabolic enzymes, cytoskeleton-associated proteins, and others (Reddy et al., 1996, 2002; Snedden et al., 1996; Zielinski, 1998; Snedden and Fromm, 2001). A family of SNF1-like protein kinases has been identified as targets for CBL proteins (Shi et al., 1999; Halfter et al., 2000). The target proteins of Ca^{2+} sensors then regulate activities that constitute cellular responses triggered by an external signal. Ca^{2+} sensors, therefore, are part of a complex signaling network of interconnected pathways. It will be interesting to determine how this network is established and how it functions to link discrete signals to specific responses. In this review, we focus on the two families of small Ca^{2+} sensors (CaM and CBL) and their targets to explore how specific signals may be transmitted through the combined action of these proteins. The CDPK-type of calcium sensors are reviewed separately in this issue.

1 To whom correspondence should be addressed. E-mail: sluan@nature.berkeley.edu; fax 510-642-4995; or e-mail: wilhelm.gruissem@ipw.biol.ethz.ch; fax 41-1-632-1079.

Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.001115.
GENES AND PROTEINS

CaMs and CBLs: Diversity and Structural Basis for Function

CaM is one of the most conserved eukaryotic proteins, although the number and organization of CaM genes can vary greatly among different organisms. As shown in Figure 1, the extended superfamily of CaMs consists of proteins with a diverse number of Ca$^{2+}$ binding EF hands and additional domains (Snedden and Fromm, 1998, 2001; Zielinski, 1998). Table 1 lists the known and putative CaM genes in Arabidopsis. Common criteria for the definition of CaM versus CaM-like and CaM-related proteins, however, are currently not established in the field. Here, we define three groups: typical CaMs, CaM-like proteins, and CaM-related proteins. In Arabidopsis, typical CaM members include CaM1 to CaM7, which are highly similar to animal CaM and to each other (>95% identical in amino acid sequence). Other proteins listed in Table 1 (CaM8 to CaM14) share 50 to 75% amino acid identity to the typical CaM2, and some of these have been shown to have CaM activity. They are referred to as CaM-like proteins (CaM8, CaM9, CaM13, and CaM14) or, when they have additional non-CaM domains, CaM-related proteins (CaM10 to CaM12).

For example, Arabidopsis CaM8 is a CaM-like protein because of its more divergent sequence. This protein can function as a CaM in Ca$^{2+}$ binding and yeast complementation experiments, but it appears to interact with a more limited set of target proteins compared with typical CaM isoforms (Zielinski, 2002). A good example of a CaM-related protein is petunia CaM53, which has been demonstrated to have CaM activity but which contains a polybasic C-terminal domain that is not found in typical CaMs (Figure 1). As discussed below, this extra domain in CaM53 regulates its cellular localization (Rodriguez-Concepcion et al., 1999). It is also interesting that the genes encoding CaM10, CaM12, and CaM2 are organized in a tandem array in this order on chromosome 2. This could result from gene duplication and the incorporation of additional domains in a sequence of events from CaM2 to CaM10 to CaM12 (Figure 1, Table 1).

CBLs also are encoded by a multigene family of at least 10 members in Arabidopsis (Table 2) that have similar structural domains with small variations in the length of the coding regions (Kudla et al., 1999; Kim et al., 2000; Albrecht et al., 2001; Guo et al., 2001b). Their amino acid sequence identity, which ranges from 20 to 90%, would be sufficient for functional redundancy among the closely related members while allowing for functional specificity among more diverged members. Unlike CaM genes, CBLs have been identified previously only in higher plants, suggesting that CBLs may function in plant-specific signaling processes.

The CaM- and CBL-type Ca$^{2+}$ binding proteins are characterized by a common helix-loop-helix structural motif (the EF hands) that acts as the Ca$^{2+}$ binding site (Figure 2). The EF-hand consensus sequence consists of a 12–amino acid loop that uses amino acids at positions 1, 3, 5, 7, 9, and 12 for interaction with Ca$^{2+}$. The Asp at position 1, Gly at position 6, and Glu at position 12 are the most highly conserved amino acids in the loop. The Gly at position 6 is required to maintain the structure of the loop, which cannot accommodate any other amino acid at this site. Comparing CaM with CBL proteins, the two families do not show significant similarity in their primary amino acid sequences except for the conserved positions in the EF-hand motifs. In addition to a general sequence difference, CaMs and CBLs also differ in the number of EF-hand motifs in their basic structures. Typically, CaMs contain four EF hands and CBLs contain three. Because the structure of no CBL has yet been characterized, we focus on the structural analysis of CaM to illustrate

Figure 1. Scheme of CaMs and CaM-Related Proteins in Plants.

Typical CaMs (such as Arabidopsis [At] CaM2 and petunia [Ph] CaM81) contain four EF hands (red ovals). CaM-related proteins show additional domains (indicated by boxes) and/or either removal or addition of EF hands. For instance, Arabidopsis CaM11 contains an insertion of 22 Gln residues (22xQ) that follow the first four amino acids of the protein (Table 1). Petunia CaM53 and rice (Os) CaM61 contain a C-terminal extension that comprises a polybasic domain (+) and a CaaL box that specifies prenylation by GGTTase-I (Rodriguez-Concepcion et al., 1999; Dong et al., 2002). A conserved C-terminal extension of unknown function is present in both Arabidopsis CaM10 and CaM12, but the latter contains two additional EF hands (Table 1). Extra EF hands and unrelated sequences also are found in the protein encoded by Arabidopsis TCX3, a touch-induced gene (Sistrunk et al., 1994). Substitution of a EF hand for a nonconserved sequence is observed in wheat (Ta) CaM2-1 (Yang et al., 1996) and tobacco (Nt) rgsCaM, which was found to be a suppressor of post-transcriptional gene silencing (Anandalakshmi et al., 2000).
Table 1. Conserved (Boldface) and Divergent CaM Genes in Arabidopsis

<table>
<thead>
<tr>
<th>Name</th>
<th>Accession Number</th>
<th>CaM Function?</th>
<th>Expressed Sequence Tags</th>
<th>Amino Acids</th>
<th>Extension</th>
<th>% Identity (%) Similarity to CaM2</th>
<th>Closest CaM Homolog (%) Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaM1</td>
<td>At5g37780</td>
<td>Yes</td>
<td>7 149</td>
<td>No</td>
<td></td>
<td>96.6 (100)</td>
<td>CaM4 (100)</td>
</tr>
<tr>
<td>CaM2</td>
<td>At2g41110</td>
<td>Yes</td>
<td>12 149</td>
<td>No</td>
<td></td>
<td>100 (100)</td>
<td>CaM3, CaM5 (100)</td>
</tr>
<tr>
<td>CaM3</td>
<td>At3g56800</td>
<td>Yes</td>
<td>4 149</td>
<td>No</td>
<td></td>
<td>100 (100)</td>
<td>CaM2, CaM5 (100)</td>
</tr>
<tr>
<td>CaM4</td>
<td>At1g66410</td>
<td>Yes</td>
<td>18 149</td>
<td>No</td>
<td></td>
<td>96.6 (100)</td>
<td>CaM1 (100)</td>
</tr>
<tr>
<td>CaM5</td>
<td>At2g27030</td>
<td>Yes</td>
<td>6 149</td>
<td>No</td>
<td></td>
<td>100 (100)</td>
<td>CaM2, CaM3 (100)</td>
</tr>
<tr>
<td>CaM6</td>
<td>(Q03509)</td>
<td>Yes</td>
<td>4 149</td>
<td>No</td>
<td></td>
<td>98.6 (99.3)</td>
<td>CaM7 (99.3)</td>
</tr>
<tr>
<td>CaM7</td>
<td>At3g43810</td>
<td>Yes</td>
<td>9 149</td>
<td>No</td>
<td></td>
<td>99.3 (100)</td>
<td>CaM2, CaM3, CaM5 (100)</td>
</tr>
<tr>
<td>CaM8</td>
<td>At4g14640</td>
<td>Yes</td>
<td>3 151</td>
<td>No</td>
<td></td>
<td>72.5 (79.8)</td>
<td>CaM11 (89.3)</td>
</tr>
<tr>
<td>CaM9</td>
<td>At3g51920</td>
<td>(Yes)</td>
<td>5 151</td>
<td>No</td>
<td></td>
<td>49.6 (60.4)</td>
<td>CaM1, CaM4 (60.4)</td>
</tr>
<tr>
<td>CaM10</td>
<td>(CaBP-22)</td>
<td>(Yes)b</td>
<td>4 191</td>
<td>C terminus</td>
<td>No</td>
<td>66.4 (73.3)</td>
<td>CaM1, CaM4 (74.6)</td>
</tr>
<tr>
<td>CaM11</td>
<td>At3g22930</td>
<td>—c</td>
<td>2 173</td>
<td>N terminus (22 Gln residues)</td>
<td></td>
<td>74.5 (83.2)</td>
<td>CaM8 (90.0)</td>
</tr>
<tr>
<td>CaM12</td>
<td>At2g41100</td>
<td>—</td>
<td>6 324</td>
<td>N terminus (2 EF hands); C terminus (similar to that of CaM10)</td>
<td></td>
<td>63.7 (69.8)</td>
<td>CaM1, CaM4 (70.5)</td>
</tr>
<tr>
<td>CaM13</td>
<td>At1g12310</td>
<td>—</td>
<td>11 148</td>
<td>No</td>
<td></td>
<td>50.3 (62.6)</td>
<td>CaM14 (95.9)</td>
</tr>
<tr>
<td>CaM14</td>
<td>At1g62820</td>
<td>—</td>
<td>1 148</td>
<td>No</td>
<td></td>
<td>49.6 (61.2)</td>
<td>CaM13 (95.9)</td>
</tr>
</tbody>
</table>

*a Does not display Ca$^{2+}$-induced electrophoretic mobility shifting but partially complements a CaM-defective yeast mutant (Zielinski, 2002).

*b Displays Ca$^{2+}$-induced electrophoretic mobility shifting (Ling and Zielinski, 1993).

*c —, unknown.

the molecular basis for calcium binding and target interaction.

The EF hands in CaM are organized into two distinct globular domains, each of which contains one pair of EF hands. Each pair of EF hands is considered the basic functional unit. Pairing of EF hands is thought to stabilize the protein and increase its affinity toward Ca$^{2+}$ (Seamon and Kreetsinger, 1983). Although each globular domain binds Ca$^{2+}$ and undergoes conformational changes independently, the two domains act in concert to bind target proteins (Nelson and Chazin, 1998). Upon increase of Ca$^{2+}$ to submicromolar or low micromolar levels, all CaM molecules are activated. Cooperative binding is required for this “on/off” mechanism to function efficiently. The cooperativity of Ca$^{2+}$ binding ensures that full activation of the CaM occurs in a narrow region of calcium concentration during a signaling event.

The selectivity of CaM toward Ca$^{2+}$ also is an important factor in effective transduction of the Ca$^{2+}$ signal. CaMs bind Ca$^{2+}$ selectively in the presence of high concentrations of Mg$^{2+}$ and monovalent cations in the cell. The cation selectivity is achieved by optimizations in the structure folds of the binding loop (Figure 2). For example, discrimination between Ca$^{2+}$ and Mg$^{2+}$ is accomplished through reduction in the size of the binding loop. Binding of Mg$^{2+}$ ions would collapse the EF-hand loop, thereby reducing the distance between negatively charged side chains and destabilizing the CaM-Mg$^{2+}$ complex (Falke et al., 1994). Even small changes in the chemical properties of the Ca$^{2+}$-binding loop (e.g., Glu-12→Gln) can drastically reduce the binding affinity to Ca$^{2+}$ (Beckingham, 1991; Haiech et al., 1991). The Glu-12→Gln mutation changes the carboxylate side chain into carboxylamide, which removes the oxygen ligand for Ca$^{2+}$ (Nelson and Chazin, 1998). Together, structural analyses in combination with site-directed mutagenesis established that CaMs (and other EF hand-containing proteins, including CBLs) have evolved as highly specific Ca$^{2+}$ sensors.

Structural analysis of the Ca$^{2+}$-free and Ca$^{2+}$-bound states of CaM proteins reveals the conformational changes induced by Ca$^{2+}$ binding (Figure 2). In the Ca$^{2+}$-free state, CaM adopts a closed conformation. Ca$^{2+}$ binding triggers a conformational change, and the protein adopts an open conformation with nearly perpendicular interhelical angles between the globular domains. This open conformation exposes a hydrophobic surface within each globular domain and permits the binding of protein targets (Babu et al., 1988; Kurobionwa et al., 1995; Zhang et al., 1995).

Ca$^{2+}$-CaM binds and regulates the activity of a wide range of proteins that are not necessarily related in structure. How can Ca$^{2+}$-CaMs bind to so many different proteins? More specifically, the plasticity of the Ca$^{2+}$-CaM structure must accommodate the variation in both the molecular size and the composition of the target proteins. This issue has been addressed by structural analyses of Ca$^{2+}$-CaM and target-bound Ca$^{2+}$-CaM. Figure 2C shows that the two globular domains of Ca$^{2+}$-CaM are connected by a
Table 2. CBL Genes and Proteins in Arabidopsis

<table>
<thead>
<tr>
<th>Name</th>
<th>Protein Accession Number</th>
<th>Nucleotide Accession Number (Verified cDNAs)</th>
<th>MIPS/TAIR Accession Number</th>
<th>Synonyms</th>
<th>Amino Acids</th>
<th>Introns</th>
</tr>
</thead>
<tbody>
<tr>
<td>AtCBL1</td>
<td>AAC26008</td>
<td>AF076251</td>
<td>At4g17615</td>
<td>214</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>AtCBL2</td>
<td>AAC26009</td>
<td>AF076252</td>
<td>At5g55990</td>
<td>227</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>AtCBL3</td>
<td>AAC26010</td>
<td>AF076253</td>
<td>At4g26570</td>
<td>226</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>AtCBL4</td>
<td>AAG28402</td>
<td>AF192886</td>
<td>At5g24270</td>
<td>223</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>AtCBL5</td>
<td>AAG28401</td>
<td>AF192885</td>
<td>At4g01420</td>
<td>214</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>AtCBL6</td>
<td>AAG28400</td>
<td>AF192884</td>
<td>At4g16350</td>
<td>227</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>AtCBL7</td>
<td>AAG10059</td>
<td>AF290434</td>
<td>At4g26560</td>
<td>214</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>AtCBL8</td>
<td>AAL10300</td>
<td>AF411957</td>
<td>At1g64480</td>
<td>214</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>AtCBL9</td>
<td>AAL10301</td>
<td>AF411958</td>
<td>At5g47100</td>
<td>213</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>AtCBL10</td>
<td>In progress</td>
<td></td>
<td>At4g33000</td>
<td>256</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

CBL Genes and Proteins in Arabidopsis

Expression Patterns of CaMs and CBLs: Clues for Function

The temporal and spatial expression of a gene and the subcellular localization of the protein often provide important clues to their functions. As expected for CaMs and CBLs that participate in numerous signaling pathways, their expression and subcellular localization are regulated by multiple signals, including light, mechanical stress, heat/cold shock, wounding, osmotic stress, pathogens, and plant hormones. Certain CaM/CBL genes also are regulated developmentally and show tissue- and cell-specific expression patterns. As discussed below, the diversity of gene expression and protein localization patterns is important for generating functional diversity and specificity.

Touch-induced genes (TCH) encode CaM-related proteins (Figure 1), which are induced rapidly by mechanical manipulation, cold and heat shock, phytohormones, and Ca²⁺ itself (Braam et al., 1997). The magnitude and kinetics of mRNA induction differ between the different TCH genes (Braam and Davis, 1990; Braam, 1992a, 1992b; Antosiewicz et al., 1995; Polisensky and Braam, 1996; Braam et al., 1997). Extensive work with TCH3 established that it is expressed in the shoot apical meristem, vascular tissue, and root pericycle cells during vegetative growth in Arabidopsis (Sistrunk et al., 1994; Antosiewicz et al., 1995). After wind stimuli, TCH3 becomes abundant in branch points of leaf primordia and stipule, pith parenchyma, and vascular tissues, although the functional consequences of this induction are not understood.

CaM proteins have an important function in pathogenesis and wounding (Bergey and Ryan, 1999; Heo et al., 1999; Yamakawa et al., 2001) and in the hypersensitive response (Levine et al., 1996; Harding et al., 1997; Harding and Roberts, 1998; Heo et al., 1999; Blume et al., 2000). Constitutive ectopic expression of CaM genes alone sometimes can trigger a pathogen response in the absence of any elicitor, resulting in acquired resistance to a wide range of pathogens and suggesting that CaM proteins are perhaps rate-limiting factors in the pathogen response (Heo et al., 1999). Other genes for CaM proteins are induced by salt (Jang et al., 1998) or expressed in a developmentally regulated and tissue-specific manner (Yang et al., 1996, 1998). For example, a novel prenylated CaM protein from petunia (Rodriguez-Concepcion et al., 1999; Caldelari et al., 2001) accumulates to high levels in meristematic tissues (Figure 3A). As more genome-wide gene expression profiling experiments are completed, we expect a broader view of CaM gene expression during plant development and under various growth conditions.

Different members of the Arabidopsis CBL gene family also show specific expression patterns. For example, CBL1 expression is induced strongly by wounding, drought, high salt, cold, and abscisic acid (Kudla et al., 1999; Pliao et al., 2001; S. Luan, unpublished results). Both CBL1 and CBL2 respond to light, but CBL2 lacks the other responses of CBL1 (Nozawa et al., 2001). Such expression patterns suggest that CBL1 and CBL2 have both overlapping and specific functions in certain signal transduction pathways.
Subcellular Localization Patterns of CaMs and CBLs: A New Paradigm for Ca$^{2+}$ Signaling?

It is becoming increasingly clear that plants can establish specific cellular Ca$^{2+}$ signatures by restricting Ca$^{2+}$ to a specific compartment of the cell (for review, see Rudd and Franklin-Tong, 2001). Certain CaMs and CBLs also are found in different subcellular locations that can change upon the perception of extracellular signals. A good example of this type of regulation is found in petunia CaM53 (Rodriguez-Concepcion et al., 1999). Like rice OsCaM61 (Figure 1), CaM53 contains a polybasic 34-residue C-terminal extension ending with a CaaX-box motif for prenylation. CaM53 is efficiently prenylated (Caldelari et al., 2001) and processed (Rodriguez-Concepcion et al., 2000) to be targeted to the plasma membrane. When prenylation is prevented by either mutation of the Cys residue of the CaaX box (Rodriguez-Concepcion et al., 1999) or inhibition of the mevalonate pathway (which provides the prenyl groups) with mevinolin (Figure 3B), the polybasic domain targets the protein to the nucleus. A similar prenylation-dependent membrane versus nuclear localization has been reported for OsCaM61 (Dong et al., 2002).

Several factors can regulate CaM53 prenylation and subcellular localization, including the availability of the prenyl groups (Figure 3B), which can depend in turn on the metabolic status of the cell (Yalovsky et al., 1999). Prenylation and plasma membrane targeting of CaM53, however, do not depend on calcium binding (Figures 3C and 3D). The prenylation status of CaM53 is likely an important aspect of its function, because the set of proteins with which CaM53 could interact upon calcium binding is expected to be very different depending on the subcellular localization of the protein. Consistently, the phenotype of *Nicotiana benthamiana* plants ectopically expressing plasma membrane–targeted CaM53 is very different from that of plants expressing the nucleus-localized CaaX-box mutant protein (Figure 3E). CaM53 may be a good example of a plant-specific CaM that incorporates a novel mechanism (prenylation-dependent differential localization) to coordinate the metabolic activity of plant cells with calcium-activated responses in the plasma membrane and the nucleus.

Certain structural features of CBLs also suggest that these Ca$^{2+}$ sensors can change their cellular localization. Several CBLs have a conserved myristoylation site in their N-terminal regions (Liu and Zhu, 1998; Kudla et al., 1999; Kim et al., 2000, Albrecht et al., 2001). It would be expected that these CBLs are localized to cell membranes, which could serve as a regulatory mechanism for establishing a local signal cascade similar to the model discussed for CaM53 above. For example, a significant amount of SOS3 (CBL4 in Table 2) is always found associated with the membrane fraction, and the myristoylation site is required for the function of the protein (Ishitani et al., 2000). CBL1 also is associated with the membrane and could be subject to regulation by a Ca$^{2+}$-myristoyl switch (J. Kudla and S. Luan, unpublished results), similar to mammalian recoverin (Resh, 1999).

In the Ca$^{2+}$-free state, the myristoyl moiety in recoverin is inaccessible to membranes. The Ca$^{2+}$-induced conformational change exposes the myristoyl group and facilitates the association of recoverin with the membrane (Resh, 1999). In the case of CBLs, the association of a particular CBL protein would target the CBL–CBL-interacting protein kinase (CIPK) complex to the membrane, thereby enabling CIPK phosphorylation of membrane-associated protein substrate(s). The view that is emerging is that in plants, certain CaM/CBL proteins have acquired protein domains that

Figure 2. Structural Analysis of Apo-CaM, Ca$^{2+}$-CaM, and the Ca$^{2+}$-CaM–Target Complex.

Strand–rod presentation of Apo-CaM (A) and Ca$^{2+}$-CaM (B) showing substantial changes upon Ca$^{2+}$ binding. (C) shows a solution structure solved by NMR of peptide-bound Ca$^{2+}$-CaM. Peptide binding causes disruption of the flexible tether, bringing the globular domains closer to form a channel around the peptide. The majority of contacts between Ca$^{2+}$-CaM and target peptide are nonspecific van der Waals bonds made by residues in the hydrophobic surfaces. Brackets indicate globular domains.
restrict their localization, perhaps as a mechanism to establish local signal transduction pathways that initiate specific cellular responses.

TARGETS AND FUNCTIONS

CaM Targets a Diverse Group of Proteins

Small Ca\(^{2+}\) sensors such as CaMs and CBLs contain the Ca\(^{2+}\) binding domains but lack other effector modules (e.g., the kinase domain in the CDPK proteins). They transmit Ca\(^{2+}\) signals by interacting with a number of target proteins. The interaction between CaM and CaM-dependent protein kinases in animal cells provides a good model that illustrates how Ca\(^{2+}\)-CaM regulates the activity of the target. For example, CaMKII contains an autoinhibitory domain that occludes the active site in the resting state. Ca\(^{2+}\)-CaM binds to a site near or overlapping the autoinhibitory domain, thereby releasing it from the active site and activating the enzyme (for review, see Hook and Means, 2001). This model appears to be applicable to interactions between CaMs/ CBLs and their target proteins in plant cells. CaM targets in plants have been reviewed extensively (Snedden and Fromm, 1998, 2001; Zielinski, 1998; Reddy et al., 2002); therefore, we introduce the conceptual framework using only a few examples to explain how CaMs regulate protein target activity in plants.

CaM target proteins can be identified using labeled CaMs to screen expression cDNA libraries (Fromm and Chua, 1992). A large number of CaM binding proteins have been identified from plants. Glu decarboxylase (GAD) is one of the best studied (Baum et al., 1993, 1996; Snedden et al., 1996; Zik et al., 1998). The enzyme catalyzes the conversion of L-Glu to \(\gamma\)-aminobutyric acid (GABA) and is activated rapidly during several stress responses (Snedden and Fromm, 1998, 2001). GAD is activated by binding either to CaM or to a monoclonal antibody that recognizes the CaM binding domain of GAD. In analogy to the Ca\(^{2+}\)-CaM–CaMK interaction, the binding of Ca\(^{2+}\)-CaM to GAD probably relieves the autoinhibitory effect of the CaM binding domain, because mutant GAD lacking the CaM binding domain (GAD\(^{C}\)) is constitutively active. Overexpression of GAD\(^{C}\) in transgenic tobacco induced developmental abnormalities associated with increased GABA levels concomitant with reduced levels of Glu (Baum et al., 1996). The activation of GAD by environmental stimuli via the Ca\(^{2+}\)-CaM signaling system is very rapid, exemplifying the highly cooperative on/off switch of the CaM response (Snedden and Fromm, 1998).

Ca\(^{2+}\)-ATPases are localized in the endomembranes or plasma membrane and play a key role in removing Ca\(^{2+}\) from the cytoplasm to terminate a signaling event, which is critical for Ca\(^{2+}\) homeostasis in all eukaryotic cells (for review, see Sze et al., 2000). Among the Ca\(^{2+}\)-ATPases in higher plants, type II B Ca\(^{2+}\)-ATPases are major targets of
Ca2+-CaM regulation. Unlike homologs in animal cells, plant type IIB ATPases are located in both endomembranes (endoplasmic reticulum and tonoplast) and the plasma membrane (Sze et al., 2000). Ca2+-CaM interacts with type IIB ATPases to activate the pump by releasing an autoinhibitory domain from the active site, similar to the Ca2+-CaM–CaMKII interaction in animals. It is noteworthy that plant Ca2+-ATPases are subject to regulation by CDPKs, another type of Ca2+ sensor. Interestingly, although Ca2+-CaM activates the pump, CDPK phosphorylation inhibits the pump, demonstrating the complexity of the regulation of Ca2+ signal termination by feedback from two different types of Ca2+ sensors (Hwang et al., 2000). Several plant nucleotide-gated ion channels also may be regulated by Ca2+-CaM (Schuurink et al., 1998; Arazí et al., 1999, 2000; Kohler et al., 1999; Leng et al., 1999). These channel proteins contain six transmembrane domains and a high-affinity CaM binding site overlapping a cyclic nucleotide binding domain (Arazí et al., 2000).

Although typical Ca2+-CaM–dependent protein kinases similar to CaMKII in animals have not been identified in plants, certain plant protein kinases are regulated by CaMs. These are exemplified by CCaMK, a chimeric plant Ca2+-CaM–dependent protein kinase with a visinin-like Ca2+ binding domain and a CaM binding domain in one molecule (Patil et al., 1995). Although Ca2+ can regulate the kinase via a visinin-like domain, Ca2+-CaM enhances the kinase activity toward a substrate and inhibits its autophosphorylation activity, suggesting that Ca2+-CaM may regulate substrate specificity in vivo (Takezawa et al., 1996). Several genes that encode CaMKII-like protein kinases have been identified by homology-based cloning from apple (Watillon et al., 1995) and through CaM interaction cloning from maize (Lu and Feldman, 1997). The structural domains of these kinases resemble those in animal CaMKII, with high-affinity CaM binding domains and a kinase domain. However, the activity of these plant CaMKII-like kinases and their regulation by Ca2+-CaM have not been characterized.

Calcium Targets in the Nucleus

Ca2+ signaling and the role of CaM in the nucleus are drawing increased interest (Rudd and Franklin-Tong, 2001; Snedden and Fromm, 2001). CaMs participate in transcriptional regulation either directly, by binding to transcription factors (Szymanski et al., 1996), or indirectly, by activating kinases or phosphatases that control transcription factor activity (Marechal et al., 1999). Studies in animal cells have demonstrated that CaM localization to the nucleus could be facilitated by differential Ca2+ oscillations (Craske et al., 1999; Teruel et al., 2000; Teruel and Meyer, 2000), suggesting additional and complex levels of transcriptional regulation. As discussed above, changing the metabolic status of plant cells induced the translocation of CaM53 to the nucleus, where it appears to activate specific signaling (Rodriguez-Concepcion et al., 1999).

Selective Ca2+ signals were measured in the cytoplasm and nucleus of transgenic plants expressing either cytoplasmic or nuclear forms of the Ca2+ reporter protein aequorin (van der Luit et al., 1999; Pauly et al., 2000). Such Ca2+ signals may be required for the expression of specific genes. For example, expression of tobacco NpCaM1 (but not NpCaM2, which encodes an identical CaM protein) in response to wind was stimulated by a nuclear Ca2+ transient, whereas cold-responsive expression was induced primarily by a cytoplasmic Ca2+ transient (van der Luit et al., 1999). Thus, spatially separated Ca2+ signals also can control the function of closely related CaM proteins through the regulation of their genes.

Several more recent studies implicate nuclear Ca2+ signals in important cellular processes. A Ca2+ binding protein required for light response has been localized in the nucleus (Guo et al., 2001a). This protein (called SUB1) also contains a putative domain for DNA binding, suggesting that it may combine the function of Ca2+ sensing and transcriptional regulation in one protein. Another study identified a CaM-related protein as a critical component in the suppression of post-transcriptional gene silencing in plants (Anandalakshmi et al., 2000). It remains to be established how these Ca2+ binding proteins mediate Ca2+ signals and regulate corresponding nuclear processes.

The CBL-CIPK Paradigm

Unlike CaMs, which interact with a large variety of target proteins, CBLs appear to interact with a single family of protein kinases (Shi et al., 1999). These kinases, referred to as CIPKs, are most similar to Suc nonfermenting (SNF) protein kinase from yeast. CBL1 interacts with CIPKs through the C-terminal nonkinase domain that contains a conserved region among different CIPK members (Shi et al., 1999). Interestingly, interaction between CBL1 and CIPK1 requires micromolar levels of Ca2+. This Ca2+-dependent interaction is consistent with the general paradigm established for Ca2+ sensor interactions with target proteins in animals (e.g., the Ca2+–CaM–CaMKII interaction).

Another study (Halfter et al., 2000) using SOS3 (equivalent to CBL4 in Table 2) as “bait” also identified several interacting protein kinases that belong to the CIPK family. In particular, SOS3 interaction with SOS2 (equivalent to CIPK24 in Table 3) stimulates kinase activity against a peptide substrate, suggesting that SOS3 serves as a regulatory subunit of SOS2. SOS2 and SOS3 were identified initially by a genetic screen for Arabidopsis mutants that are salt overly sensitive (SOS; not to be confused with earlier terms such as SOS [Son-Of-Sevenless in mitogen-activated protein kinase pathways in animals] or the SOS response in Escherichia coli) (Liu and Zhu, 1998; Liu et al., 2000; for review, see Hasegawa et al., 2000). Mutations in SOS genes render...
Arabidopsis plants hypersensitive to NaCl in the growth medium, implicating SOS genes in salt tolerance functions.

The Arabidopsis genome contains a large number of genes for putative CIPK proteins. Table 3 lists 25 CIPK genes that have been confirmed by cDNA cloning and sequencing. Further experiments have extended the analysis of CBL–CIPK interactions to the entire family of CBLs and a large fraction of the CIPK family in an effort to determine the functional pairs of CBLs and CIPKs. These studies revealed interaction specificity among various members of the CBL and CIPK families. Considering the number of genes in the two families (~10 CBLs versus 25 CIPKs), one would expect that some CBLs interact with more than one CIPK. Indeed, certain CBLs interact with multiple CIPKs; likewise, some CIPKs interact with multiple CBLs (Kim et al., 2000; Albrecht et al., 2001; Guo et al., 2001b). It must be noted, however, that these interaction studies were performed primarily using the yeast two-hybrid system; therefore, they may not necessarily represent the physiological situations in plants. In addition to matching the CBLs with their target kinases, the interaction studies further defined the functional domains of CBLs and CIPKs. For example, the CBL-interacting domain in the C-terminal region of CIPKs was localized to a small region of ~20 amino acids (Kim et al., 2000; Albrecht et al., 2001; Guo et al., 2001b). This domain may function in kinase regulation by releasing the autoinhibitory domain (Guo et al., 2001b).

The diversity in the protein sequence/structure and expression patterns of CBLs and CIPKs suggests that these proteins perform many different functions. To date, a physiological function has been established for only a few CBL and CIPK proteins. As discussed above, SOS2 and SOS3 have been identified by a genetic screen and appear to play a role in salt tolerance in Arabidopsis (Liu and Zhu, 1998; Hasegawa et al., 2000; Liu et al., 2000). Because high salt induces an increase in Ca^{2+} levels in the cytoplasm (Pauly et al., 2000), salt tolerance could involve Ca^{2+} signaling and the signal could be transmitted via SOS3/SOS2 to components required for salt detoxification (Hasegawa et al., 2000). In this context, it is interesting that one of the three identified SOS genes, SOS1, encodes a putative Na^{+}/H^{+} antiporter (Shi et al., 2000), reinforcing the view that Ca^{2+} signaling has a role in salt detoxification.

In addition to the SOS3/SOS2 pair, biochemical studies have shown that CBL1 expression is highly responsive to a variety of abiotic stress conditions, including wounding, cold, drought, and high salt, implicating CBL1 in signaling these stress signals (Kudla et al., 1999). This hypothesis is supported by further genetic analysis of the CBL1 gene. Disruption of CBL1 gene function renders mutant plants

<table>
<thead>
<tr>
<th>Name</th>
<th>Protein Accession Number</th>
<th>Nucleotide Accession Number (Verified cDNAs)</th>
<th>MIPS/TAIR Accession Number</th>
<th>Synonyms</th>
<th>Amino Acids</th>
<th>Introns</th>
</tr>
</thead>
<tbody>
<tr>
<td>AtCIPK1</td>
<td>AAG28776</td>
<td>AF302112</td>
<td>At3g17510</td>
<td>444</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>AtCIPK2</td>
<td>AAF86506</td>
<td>AF286050</td>
<td>At5g07070</td>
<td>456</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>AtCIPK3</td>
<td>AAF86507</td>
<td>AF286051</td>
<td>At2g26980</td>
<td>375</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>AtCIPK4</td>
<td>AAG01367</td>
<td>AY007221</td>
<td>At1g14580</td>
<td>426</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>AtCIPK5</td>
<td>AAF86504</td>
<td>AF285105</td>
<td>At5g10930</td>
<td>431</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>AtCIPK6</td>
<td>AAF86505</td>
<td>AF285106</td>
<td>At4g30960</td>
<td>441</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>AtCIPK7</td>
<td>AAK16682</td>
<td>AF290192</td>
<td>At3g23000</td>
<td>AtSR1</td>
<td>429</td>
<td>No</td>
</tr>
<tr>
<td>AtCIPK8</td>
<td>AAK16683</td>
<td>AF290193</td>
<td>At4g44000</td>
<td>445</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>AtCIPK9</td>
<td>AAK16684</td>
<td>AF295664</td>
<td>At1g01140</td>
<td>449</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>AtCIPK10</td>
<td>AAK16685</td>
<td>AF295665</td>
<td>At5g58380</td>
<td>479</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>AtCIPK11</td>
<td>AAK16686</td>
<td>AF295666</td>
<td>At2g30360</td>
<td>435</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>AtCIPK12</td>
<td>AAK16687</td>
<td>AF295667</td>
<td>At4g18700</td>
<td>489</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>AtCIPK13</td>
<td>AAK16688</td>
<td>AF295668</td>
<td>At2g34180</td>
<td>502</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>AtCIPK14</td>
<td>AAK16689</td>
<td>AF295669</td>
<td>At5g01820</td>
<td>AtSR2</td>
<td>442</td>
<td>No</td>
</tr>
<tr>
<td>AtCIPK15</td>
<td>AAK16692</td>
<td>AF302111</td>
<td>At5g01810</td>
<td>AtPK10</td>
<td>421</td>
<td>No</td>
</tr>
<tr>
<td>AtCIPK16</td>
<td>AAK50348</td>
<td>AY030304</td>
<td>At2g25090</td>
<td>469</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>AtCIPK17</td>
<td>AAK64513</td>
<td>AY036958</td>
<td>At1g48260</td>
<td>421</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>AtCIPK18</td>
<td>AAK59695</td>
<td>AY034099</td>
<td>At1g29230</td>
<td>520</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>AtCIPK19</td>
<td>AAK50347</td>
<td>AY030303</td>
<td>At5g45810</td>
<td>483</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>AtCIPK20</td>
<td>AAK61493</td>
<td>AY035225</td>
<td>At5g45820</td>
<td>439</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>AtCIPK21</td>
<td>AAK59696</td>
<td>AY034100</td>
<td>At5g57630</td>
<td>417</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>AtCIPK22</td>
<td>AAL47845</td>
<td>AF450478</td>
<td>At2g38490</td>
<td>445</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>AtCIPK23</td>
<td>AAK61494</td>
<td>AY035226</td>
<td>At1g30270</td>
<td>482</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>AtCIPK24</td>
<td>AAK72257</td>
<td>AF395081</td>
<td>At5g35410</td>
<td>SOS2</td>
<td>446</td>
<td>Yes</td>
</tr>
<tr>
<td>AtCIPK25</td>
<td>AAL41008</td>
<td>AF448226</td>
<td>At5g25110</td>
<td>487</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
hypothesis that CaM and temporal information, which is referred to as the "specificity" in both animals and plants, they appear to vary in their spatial and temporal expression patterns of CaMs and CBLs, their target proteins, and additional downstream components in the signaling pathways. Each step in this process constrains the Ca2+ signal, ultimately leading to specificity in cellular responses, yet provides opportunities at every step for potential cross-talk to parallel or competing pathways. To fully understand the Ca2+ signaling pathways, we must not only decode the Ca2+ signatures but also dissect the "combination code" that consists of calcium sensors and downstream target proteins.

Accession Numbers

The Protein Data Bank accession numbers for the proteins shown in Figure 2 are 1CFC (Apo-CaM), 1CLL (Ca2+-CaM), and 1CFF (Ca2+-CaM).

ACKNOWLEDGMENTS

We thank colleagues in our laboratories for helpful discussions and Drs. H. Sano and N. Koizumi for providing unpublished results. Our apologies to colleagues in the field whose work was not discussed because of space limitations. Our research discussed in this review is supported by the National Institutes of Health and the National Science Foundation (S.L.), the Spanish Ministry of Science and Technology (M.R.-C.), the Israel Science Foundation and Binational Science Foundation (S.Y.), and the Swiss Federal Institute of Technology (W.G.).

Received December 11, 2001; accepted March 24, 2002.

REFERENCES

calmodulin-related protein that suppresses posttranscriptional gene silencing in plants. Science 290, 142–144.

Coupling in Plants

like Proteins: Calcium Sensors for Specific Signal Response

Sheng Luan, Jörg Kudla, Manuel Rodriguez-Concepcion, Shaul Yalovsky and Wilhelm Gruissem

Plant Cell 2002;14;S389-S400

DOI 10.1105/tpc.001115

This information is current as of November 6, 2017