Cell Polarity and PIN Protein Positioning in Arabidopsis Require STEROL METHYLTRANSFERASE1 Function

Viola Willemsen,a Jirí Friml,b,1 Markus Grebe,a Albert van den Toorn,a Klaus Palme,c and Ben Scheresa,2

a Developmental Genetics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
b Max-Delbrück-Laboratorium in der Max-Planck-Gesellschaft, Carl-von-Linné-Weg 10, 50829 Köln, Germany
c Institut für Biologie II, Zell-biologie, Universität Freiburg, 79104 Freiburg, Germany

Plants have many polarized cell types, but relatively little is known about the mechanisms that establish polarity. The orc mutant was identified originally by defects in root patterning, and positional cloning revealed that the affected gene encodes STEROL METHYLTRANSFERASE1, which is required for the appropriate synthesis and composition of major membrane sterols. smt1orc mutants displayed several conspicuous cell polarity defects. Columella root cap cells revealed perturbed polar positioning of different organelles, and in the smt1orc root epidermis, polar initiation of root hairs was more randomized. Polar auxin transport and expression of the auxin reporter DR5-GUS were aberrant in smt1orc. Pattern defects in smt1orc resembled those observed in mutants of the PIN gene family of putative auxin efflux transporters. Consistently, the membrane localization of the PIN1 and PIN3 proteins was disturbed in smt1orc, whereas polar positioning of the influx carrier AUX1 appeared normal. Our results suggest that balanced sterol composition is a major requirement for cell polarity and auxin efflux in Arabidopsis.

INTRODUCTION

Polarized cells distribute intracellular components asymmetrically along a particular axis. A polar distribution of factors can facilitate specialized cellular functions, such as absorption and secretion in epithelial cells (Rodriguez-Boulan and Nelson, 1989). Cell polarity also can provide positional information in multicellular pattern formation. In Drosophila and Caenorhabditis elegans, for example, localized membrane-tethered proteins guide asymmetric cell division to establish different daughter cells (Knoblich, 2001). One manifestation of plant cell polarity at the multicellular level is polar transport of the phytohormone auxin, which is important for various developmental processes, such as vascular patterning, tropism, shoot development, and axis formation (Estelle, 1998). In Arabidopsis, the cloning of genes defective in these processes has led to the identification of the PIN family of proteins implicated in auxin efflux (Chen et al., 1998; Gälweiler et al., 1998; Luschnig et al., 1998; Müller et al., 1998; Friml et al., 2002a, 2002b) and the AUX1 protein required for influx (Marchant et al., 1999; Rahman et al., 2001). PIN and AUX1 proteins are localized asymmetrically in several cell types; thus, they serve as molecular markers for cell polarity (Gälweiler et al., 1998; Müller et al., 1998; Swarup et al., 2001; Friml et al., 2002a, 2002b).

Vesicle trafficking has been shown to be important for correct polar PIN and AUX1 protein localization (Steinmann et al., 1999; Grebe et al., 2002). In gnom/emb30 mutant embryos, the coordinated polar localization of the PIN1 protein is not established properly, and the mutant embryos and seedlings display variable defects in cell and tissue polarity (Mayer et al., 1993; Vroemen et al., 1996; Steinmann et al., 1999). The GNM (GN) gene encodes a brefeldin A (BFA)–sensitive guanosine nucleotide exchange factor (GEF) on ADP-ribosylation factor (ARF)–type small G-proteins, which are regulators of vesicle trafficking (Steinmann et al., 1999). PIN1 rapidly cycles in an actin-dependent manner between the plasma membrane and the endosomes (Geldner et al., 2001). Consistent with a role for ARF-GEFs in PIN1 localization, the vesicle-trafficking inhibitor BFA causes intracellular PIN1 accumulation (Steinmann et al., 1999) and inhibition of auxin efflux (Debbarre et al., 1998; Morris and Robinson, 1998). In addition, AUX1 localization is sensitive to BFA, and AUX1 is one of the components that mediate epidermal cell polarity, as reflected by the disturbed polar localization of root hair outgrowth from aux1 epidermal cells (Grebe et al., 2002).

Studies of vesicle trafficking in animal epithelial cells have revealed that depletion of cholesterol, the main animal sterol, reduces the polar delivery of target proteins (Keller and Simons, 1998). These findings have led to sorting models that involve lipid-protein clusters, of which cholesterol is a major component (Brown and London, 2000). In plants, a connection between membrane sterol composition and cell polarity has not been reported previously. However, several sterols structurally related to cholesterol are present in plants, sitosterol being the most abundant (Patterson et al., 1993). Campesterol, the next abundant sterol, is a precursor of brassinosteroids, which are involved in the control of plant growth and development (Altmann, 1998; Clouse and Feldmann, 1999).

In this study, we describe the Arabidopsis orc mutant, which was isolated as a single allele in a screen for root-patterning...
mutants. Map-based cloning revealed that the orc mutation represents an allele of the STEROL METHYLTRANSFERASE1 (SMT1) gene (also referred to as CEPHALOPOD [CPH]), which encodes an enzyme required for appropriate sterol levels and that is involved in C-24 alkylation of sterols during sterol biosynthesis (Diener et al., 2000; Schrick et al., 2002). We report specific defects for smt1orc in the polarization of several different cell types and in polar auxin transport. Consistent with a primary role of the SMT1 gene in cell polarity, the efflux carriers PIN1 and PIN3 showed aberrant localization in smt1orc mutants. Our data provide evidence that sterols are involved intimately in the establishment of plant cell polarity and suggest a link between sterol biosynthesis and efflux carrier positioning.

RESULTS

The orc Mutation Alters the C Terminus of SMT1

The orc mutant was identified as a single recessive allele in a large-scale screen for ethyl methanesulfonate mutants affected in root development from embryogenesis onward (Scheres et al., 1996). The orc mutation maps to a single locus on chromosome 5 (see below). The primary root length of orc was ~20% of wild-type length, and lateral roots showed similar defects in growth. In mature orc plants, leaf size was reduced and multiple primary inflorescences arose simultaneously (Figure 1F, arrows) and showed a reduction in elongation (Figure 1G). Furthermore, orc flowers had reduced fertility, sepals of terminal flowers often had frayed edges (Figure 1H), and terminal siliques frequently were fused in triplets (Figure 1I).

To investigate the molecular basis of the orc mutation, we isolated the affected gene by map-based cloning (Figure 2). Fine-mapping experiments located the gene on chromosome 5 BAC MSH12 between positions 32,946 and 72,976 (Figure 2B). Using primers from this region, a transformation-competent artificial chromosome (TAC) vector library (Lui et al., 1993) was screened, and overlapping TACs were transformed into orc homozygotes. The full-size TAC K12A16 complemented orc seedlings, whereas a deleted version did not (Figures 2C and 2D). This confined the position of the gene to TAC K12A16 region MSH12.32946-72976. In open reading frame (ORF) MSH12.18, a G-to-A substitution was found at the splice acceptor site of exon 13. The expected size of the mRNA was 1285 bp, and reverse transcriptase–mediated PCR of orc RNA, with primers matching the first 30 bp downstream of the ATG and 30 bp upstream of the stop codon of the SMT1 mRNA, resulted in two products. Sequencing showed that the fragments were alternative splice products. In one case, the next G after substitution served as a splice acceptor, and in the other case, the intron was not spliced out, which resulted in fragments of 1284 and 1390 bp, respectively (Figure 2F). One variant is pre-

Figure 1. The orc Mutant Alters Plant Morphology.

(A) Five-day-old wild-type (WT) seedling grown on half-strength germination medium.
(B) Four-week-old wild-type plant.
(C) and (D) Six-week-old wild-type plant (C) and wild-type flower (D).
(E) Five-day-old orc seedling grown on half-strength germination medium. Arrows indicate lobes of the cotyledons.
(F) Three-week-old homozygous orc plant grown on half-strength germination medium (arrows).
(G) Six-week-old homozygous orc plant.
(H) orc terminal flower with sepals with frayed edges (arrows).
(I) orc terminal flower with fused siliques.
Bars in (B) and (C) ~ 2.5 cm for (B), (C), (F), and (G).
SMT1 has been proposed to be involved in sterol biosynthesis via methyl additions that form campesterol and sitosterol, which are precursors of brassinosteroids and a major membrane component, respectively (Diener et al., 2000). The smt1orcc mutation carries the same lesion in SMT1 as the independently isolated Landsberg erecta allele cph-GXIII (Schrick et al., 2002), and despite the truncation of only the C-terminal part of the protein, which may suggest that these alleles are not null mutants, both profoundly affect sterol composition. In agreement with investigations of other smt1 alleles, we detected a significant reduction of sitosterol and a significant increase of cholesterol in smt1orcc, whereas campesterol levels were largely unaffected (Table 1). Moreover, sitosterol, campesterol, stigmasterol, cholesterol, and epibrassinolide did not rescue the smt1orcc mutant phenotype (data not shown) (Diener et al., 2000; Schrick et al., 2002).

Cell Polarity Defects in smt1orcc Seedlings

In vertically grown wild-type seedlings, differentiated columella in tiers 2 through 4 have a polarized morphology, with starch-containing plastids (amyloplasts) at the basal ends (MacCleery and Kiss, 1999) (Figures 3A and 3B). When analyzing the smt1orcc phenotype at the cellular level, we noted cell polarity defects in columella root cap cells (Figures 3E and 3F). We determined the apical-basal (proximal-distal) polarity of the cells in smt1orcc in relation to the main root axis, and because cell shapes may vary in smt1orcc roots (Figure 3E) but no correlation was observed between cell shape and the disturbance of polarity markers, “straight” cells were preselected for statistical analysis (Table 2, Figures 4A to 4D). In these cells, we determined the mid plane of the cell and counted the percentage of amyloplasts that passed to the apical side to quantify the more random localization of amyloplasts in smt1orcc columella cells (Figures 3E and 3F, Table 2).

Whereas plastid location responds to gravity, the nucleus of wild-type columella cells is located at the apical end independent of the gravity vector (MacCleery and Kiss, 1999) (Figure 3C). To quantify the position of the nucleus in columella cells, a ratio was determined between the distance from the apical cell wall to the apical side of the nucleus and the cell length. In the wild type, the nuclei resided at the apical side of columella cells (ratio of 0 to 0.2), whereas in smt1orcc columella cells, the positions of the nuclei were found in a broader range (ratio of 0 to 0.6) (Figures 3G and 4A). The randomized positions of amyloplasts and nuclei in smt1orcc columella cells suggest that columella cells in smt1orcc mutants are defective in apical-basal polarity.

<table>
<thead>
<tr>
<th>Sterol</th>
<th>Wild Type</th>
<th>smt1orcc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sitosterol</td>
<td>73.9 ± 4.1</td>
<td>42.2 ± 1.6</td>
</tr>
<tr>
<td>Campesterol</td>
<td>18 ± 1.8</td>
<td>22.3 ± 0.3</td>
</tr>
<tr>
<td>Stigmasterol</td>
<td>2.3 ± 0.7</td>
<td>Trace</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>2.2 ± 0.1</td>
<td>14.7 ± 1.5</td>
</tr>
</tbody>
</table>

Values represent percentages (±SD) of the total sterol content and are calculated from two independent sterol isolations and quantifications.
Another root cell type with conspicuous apical-basal polarity is the trichoblast, because hair initiation and outgrowth occur at its basal end (Figures 3D and 4B) (Massucci and Schiefelbein, 1994). Compared with the wild type, the initiation of hairs in the \textit{smt1}^{orc} trichoblast was more randomized over the apical-basal axis (Figures 3H and 4B). The altered distribution of polarity markers in different cell types of the \textit{smt1}^{orc} mutant suggests that the \textit{SMT1} gene is required for polarity at the cellular level.

Application of the Synthetic Auxin 2,4-D Shifts \textit{smt1}^{orc} Root Hairs Basally

The establishment of apical-basal trichoblast cell polarity involves the putative auxin influx carrier ALX1 and other factors sensitive to inhibitors of vesicle trafficking, which may include as yet unidentified efflux carriers (Grebe et al., 2002). To determine if defects in auxin influx cause trichoblast polarity abnormalities in \textit{smt1}^{orc}, we applied the synthetic auxin 2,4-D, a preferential substrate for the auxin influx system, to the growth medium (Delbarre et al., 1996). Application of 20 nM 2,4-D to wild-type trichoblasts induced shifting of the root hair to the basal end of the cell (Figure 4C). \textit{aux1} trichoblasts do not respond to this 2,4-D concentration (Grebe et al., 2002), but application of 20 nM 2,4-D to \textit{smt1}^{orc} shifted root hairs basally to

Figure 3. Cell Polarity Defects in \textit{smt1}^{orc}.

(A) and (B) In the wild type (WT), amyloplasts are located at the basal ends of columella cells.

(C) The nucleus is located at the apical end.

(D) Root hairs initiate from the basal end of the polarized trichoblast.

(E) and (F) Amyloplast position in \textit{smt1}^{orc} columella cells.

(G) Nuclear localization in \textit{smt1}^{orc} columella cells.

(H) The initiation site of \textit{smt1}^{orc} root hairs.

In (D) and (H), long arrows indicate trichoblast length, and short arrows indicate the root hair initiation site. In (A) to (C) and (E) to (G), plastic sections of 5-day-old seedling roots are shown; whole mounts are shown in (D) and (H) under Nomarski optics. Bars = 25 \(\mu\)m in (A) and (E), 10 \(\mu\)m in (B) for (B), (C), (F), and (G), and 20 \(\mu\)m in (D) and (H).

Table 2. Quantification of Amyloplast Distribution in Columella Cells

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>Apical Amyloplastsa</th>
<th>No.b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type</td>
<td>3.8 (\pm) 0.7</td>
<td>536</td>
</tr>
<tr>
<td>\textit{smt1}^{orc}</td>
<td>29.1 (\pm) 1.8</td>
<td>493</td>
</tr>
</tbody>
</table>

aPercentage of amyloplasts (\(\pm\) SD) that had passed the median of the cell length to the apical side.

bNumber of amyloplasts counted in two independent experiments.
almost the same position as in the wild type (Figure 4D). Thus, a perturbation of auxin influx does not appear to account for the epidermal polarity defects in \textit{smt1}^{orc}; rather, a defect in response or the availability of auxin from endogenous sources seems to be the cause.

Aberrant Auxin Distribution and Defective Polar Auxin Transport in \textit{smt1}^{orc}

We questioned whether auxin availability could be limited by a differential distribution in \textit{smt1}^{orc}. The synthetic auxin-responsive reporter \textit{DR5}-\beta-glucuronidase (GUS) (Ulmasov et al., 1997) is expressed in a polar transport-dependent manner in the distal root tip, and its expression correlates with high free auxin levels (Casimiro et al., 2001). Thus, \textit{DR5-GUS} distribution in the embryo and root can be taken as an indicator of auxin distribution (Figures 5A and 5B) (Sabatini et al., 1999). \textit{smt1}^{orc} embryos and seedlings were defective in the normal localization of the \textit{DR5-GUS} maximum (Figures 5E and 5F). No consistent differences in \textit{DR5-GUS} signal strength were observed in \textit{smt1}^{orc}, indicating that auxin response levels are unaffected in the mutant.

When the synthetic auxin 2,4-D was applied externally, we observed high accumulation of \textit{DR5-GUS} in the wild type at 5 \textmu M 2,4-D (Figures 5C and 5D), whereas \textit{smt1}^{orc} showed high accumulation already at 0.5 \textmu M 2,4-D (Figures 5G and 5H). This finding confirms that auxin uptake is not reduced in \textit{smt1}^{orc} root tips. Reporter activation upon application of lower concentrations of external 2,4-D may be explained by either more efficient uptake of 2,4-D or less efficient efflux in \textit{smt1}^{orc}, resulting in the accumulation of exogenous auxin within root cells.

To investigate potential defects in polar auxin transport in \textit{smt1}^{orc}, we applied 3H-labeled indoleacetic acid (IAA, the major endogenous auxin) to the apical side of primary stem sections and measured the amount transported to the basal end. Polar auxin transport in stem sections is particularly sensitive to the action of the efflux carrier inhibitor naphthylphthalamic acid (NPA) (Hertel et al., 1983; Heyn et al., 1987), which completely blocked transport in the wild type and \textit{smt1}^{orc} (Figure 4E, column A). \textit{smt1}^{orc} mutants displayed a 35% reduction in transport to basal stem segments compared with the wild type, which led, as expected, to an accumulation of 3H-IAA in the apical segment (Figure 4F). A reduced number of vascular connections in the stem might affect auxin transport capacity, but the number of vascular bundles in cross-sectional areas of \textit{smt1}^{orc} stem segments (5.9 \pm 1.1, n = 15) was comparable to that in the wild type (6.7 \pm 1.3, n = 15) (Figures 6A and 6D).

Our data suggest that differences in auxin distribution occur in \textit{smt1}^{orc} roots. Furthermore, these differences appear to be attributable not to decreased auxin influx or response but to decreased efflux capacity, which is consistent with the observed reduction of polar auxin transport in stem sections.

Mislocalized Auxin Reporter Expression in \textit{smt1}^{orc} Correlates with Patterning and Growth Defects

Changes in auxin distribution reflected by \textit{DR5-GUS} expression have been shown to correlate with patterning defects in
the root (Sabatini et al., 1999), and smt1orc was identified originally as a root-patterning mutant (Scheres et al., 1996). Therefore, we analyzed the cellular organization of smt1orc roots in some detail. Cell shapes and sizes in the proximal meristems of smt1orc roots can be abnormal as a result of changes in the orientation of cell division, but epidermal, ground tissue, and vascular cells all were present (Figures 6B and 6E). In the distal root region, columella root cap cells were irregular in shape and alignment, but they expressed columella markers (Figures 6C, 6F, 6G, 6H, 6J, and 6K). Notably, cells with the characteristic morphology of the quiescent center (QC) were not observed in smt1orc roots, and smt1orc seedlings did not express the strictly QC-specific promoter trap line QC46 (Figures 6I and 6L) (Sabatini et al., 1999). Occasionally, cells in the position at which the QC would be expected expressed a columella root cap marker (Figure 6K). Furthermore, a 49% reduction in meristem size (measured as the region of mitotically active cells enclosed by the lateral root cap) compared with that in the wild-type meristem was observed in 6-day-old smt1orc seedlings (n = 54). Thus, a full-size meristem cannot be maintained in smt1orc. Defective meristem maintenance and the absence of a QC are in agreement with a function for the QC in stem cell maintenance (van den Berg et al., 1997).

In wild-type embryos, the hypophyseal cell divides to give rise to a small lens-shaped cell, the progenitor of the QC (Figure 7A, asterisks) (Dolan et al., 1993). In smt1orc, the divisions of the hypophyseal cell were either absent (Figures 7I, 7K, and 7L, Table 3) or irregular (Table 3). Furthermore, smt1orc embryos invariably lacked QC46 expression, which marks the wild-type QC from the heart stage onward (data not shown). In wild-type embryos, the basal cell of the ground tissue layer did not divide periclinally (Figures 7A, 7C, and 7D, Table 4). Postembryonically, repression of this division to maintain the basal stem cells of the ground tissue requires a functional QC (van den Berg et al., 1997). Consistent with a defective specification of QC identity, the basal stem cells of the ground tissue in late smt1orc embryos frequently divided periclinally (Figures 7E, 7G, and 7H, arrow, Table 4).

We noted that cotyledons of wild-type embryos displayed a DR5-GUS maximum at the distal tip and lower expression in vascular cells (Figure 8A). By contrast, multiple DR5-GUS maxima occurred in smt1orc embryonic cotyledons (Figure 8F). Most smt1orc embryos showed abnormally shaped cotyledon primordia, and 19% (n = 57) of smt1orc heart-stage embryos had more than two cotyledon primordia (Figure 7J, arrowheads). Therefore, the multiple DR5::GUS maxima in cotyledons of smt1orc embryos correlate with defects in patterning. Consistent with these defects, cotyledons of smt1orc seedlings were lobed and often supernumerary (Figure 1E). The positions of lobes on cotyledons correlated with the venation pattern, because each lobe contained a primary vein with discontinuous vascular strands, as reported for other mutants with defects in vascular patterning (Figure 8G) (Przemeck et al., 1996; Deyholos et al., 2000; Carland et al., 2002). Frequently, isolated clusters of xylem elements (vascular islands) were formed in smt1orc (Figure 8H), like those observed after the ap-
plication of polar transport inhibitors (Mattsson et al., 1999; Sieburth, 1999).

Consistent with the notion that auxin distribution influences not only patterning but also root tropism, we observed an irregular orientation of smt1orc seedling roots on vertical plates (Figures 8D and 8I), and smt1orc seedlings responded more randomly to a 90° change of the gravity vector (Figures 8E and 8J).

PIN1 and PIN3 Proteins but Not HA::AUX1 Are Inappropriately Localized in smt1orc

To understand the molecular basis of the cell polarity defects in relation to the altered auxin distribution and the polar auxin transport defects in smt1orc, we performed immunolocalization of hemagglutinin-tagged AUX1 (HA::AUX1), PIN1, and PIN3.

In protophloem cells, the complementing HA::AUX1 protein resides at the apical side in wild-type seedlings (Swarup et al., 2001). smt1orc mutants were crossed to aux1-22 HA::AUX1 plants, and in the progeny, smt1orc seedlings showed normal HA::AUX1 protein localization in relation to the root axis (Figures 9A and 9B). Note that cells with oblique apical walls still retained AUX1 protein at the apical membrane only (Figure 9B, arrow). The putative auxin efflux carrier PIN1 localized to the basal end of central vascular cells, including AUX1-expressing protophloem cells, and to the basal end and the internal lateral side of pericycle cells (Figure 9C) (Gälweiler et al., 1998). In sharp contrast to the wild type, we detected PIN1 protein at lateral sites of elongated central vascular cells in smt1orc, which were axialized correctly in the direction of the root axis (Figures 9D and 9E, arrows). In the wild type, the putative efflux carrier PIN3 localized uniformly throughout the plasma membranes of tier-2 and -3 columella cells (Figure 9F) (Friml et al., 2002a), whereas in smt1orc, PIN3 was not distributed uniformly in tier-2 and -3 columella cells (Figures 9G and 9H). We conclude that smt1orc function is required for correct PIN1 and PIN3 plasma membrane localization but not for proper AUX1 plasma membrane localization.

Appropriate plasma membrane localization of PIN1 requires the GN ARF-GEF protein (Steinmann et al., 1999). We investigated possible interactions between SMT1 and GN, because cell polarity defects, including PIN1 mislocalization in both mutants, implicate both genes in a similar process. All different classes of seedlings obtained from crosses were analyzed and genotyped (Table 5). Genotyped smt1orc gnT391 double-mutant seedlings were slightly smaller than gn seedlings, had multiple and lobed cotyledons like smt1orc, and lacked root and hypocotyl pattern elements like gn, indicating the additivity of several phenotypes (Figures 9I to 9K). The mutation that causes the emb30-1/gnT391 phenotype behaves as a functional null allele in a heterologous system (Busch et al., 1996; Mossessova et al., 1998), suggesting that SMT1 acts on seedling pattern and polarity in the absence of GN activity. We cannot exclude the possibility that the additivity of the seedling phenotypes results from effects unrelated to cell polarity. However, the multiple-cotyledon phenotype that we observed in smt1orc and in the double mutant has been linked to defective polar auxin transport (see Discussion), which indicates that SMT1 affects this process independent of GN.

![Figure 6](image-url)
DISCUSSION

SMT1 Connects Cell Polarity and Pattern Formation

We have shown that the SMT1 gene is required for the correct specification of polarity in single cells and for polar auxin transport at the organ level. Misorientation of division planes was observed in early embryos, and trichoblast polarity defects were rescued postembryonically, which suggests that specific cell polarity defects may be the primary consequences of the smt1orc mutation. In agreement with these observations, PIN proteins, which are components of the putative auxin efflux machinery, were mislocalized in smt1orc mutants, but the AUX1 protein, which is required for auxin influx, was localized cor-

Table 3. Hypophyseal Cell Development in smt1orc Embryos

<table>
<thead>
<tr>
<th>Stage</th>
<th>Wild Type</th>
<th>smt1orc</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal Division (%)</td>
<td>Aberrant Division (%)</td>
<td>Undivided (%)</td>
<td>No.</td>
</tr>
<tr>
<td>Early globular</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Triangular</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Heart</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>71</td>
</tr>
<tr>
<td>Late heart</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>24</td>
</tr>
</tbody>
</table>
The expression of a synthetic auxin reporter gene, \textit{DR5-GUS}, was changed in \textit{smt1orc} mutants, suggesting profound changes in auxin distribution, and these changes correlated well with observed defects in pattern formation.

Differences in auxin levels have been correlated previously with the patterning of plant embryos (Hadfi et al., 1998), leaf vasculature (Mattsson et al., 1999; Sieburth, 1999), and roots (Sabatini et al., 1999; Friml et al., 2002a). Hence, many, if not all, aspects of the \textit{smt1orc} phenotype may be explained by a primary defect in cell polarity that manifests itself in the multicellular plant by a variety of polar auxin transport defects and their consequences. Differences in sterol composition in \textit{smt1orc} may cause pleiotropic defects unrelated to auxin transport, but most phenotypes observed in \textit{smt1orc} match well with the known functions of \textit{PIN} genes. First, \textit{pin4} embryos show abnormal divisions in the hypophyseal cell and its derivatives, altered \textit{DR5::GUS} distribution, increased \textit{DR5}-promoter activity upon auxin treatment, and root-patterning defects (Friml et al., 2002a). Second, cotyledon patterning is affected in \textit{pin1} mutants and upon the application of polar auxin transport inhibitors to embryos (Okada et al., 1991; Liu et al., 1999; Hadfi et al., 1998). Third, clustered xylem elements (vascular islands) were formed in \textit{smt1orc}, which also have been observed after the application of polar auxin transport inhibitors (Mattsson et al.,

<table>
<thead>
<tr>
<th>Stage</th>
<th>Wild Type</th>
<th>smt1orc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Undivided (%)</td>
<td>Divided (%)</td>
</tr>
<tr>
<td>Dermatogen</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Early globular</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Triangular</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Heart</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Late heart</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Torpedo</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 8. Cotyledon Development and Tropic Responses in \textit{smt1orc}.

(A) \textit{DR5-GUS} expression in a wild-type (WT) mature embryonic cotyledon.
(B) Vascular pattern of a cotyledon of a 5-day-old wild-type seedling.
(C) Enlargement of (B).
(D) Five-day-old seedlings of the wild type.
(E) Scheme of the gravitropic response of wild-type seedling roots after 90° rotation and 24 h in the dark. 0 indicates the direction of the gravity vector after rotation.
(F) Multiple \textit{DR5-GUS} maxima in a \textit{smt1orc} mature embryonic cotyledon (black arrows).
(G) Lobed cotyledon of a 5-day-old \textit{smt1orc} seedling (arrowheads).
(H) Enlargement of (G) showing the discontinuous vascular system and the formation of “vascular islands” (white arrows).
(I) Altered tropism in 5-day-old \textit{smt1orc} seedlings.
(J) Gravitropic response of \textit{smt1orc} seedling roots.

(B), (C), (F), and (G) show dark-field images of cotyledons of 5-day-old seedlings cleared with chloral hydrate. Bars = 100 μm in (B) and (C) for (B), (C), (G), and (H), 25 μm in (A) for (A) and (F), and 2 mm in (D) for (D) and (I).
Fourth, the altered gravitropic response of *smt1orc* seedling roots was similar to defects in *pin2* and *pin3* mutants (Luschnig et al., 1998; Müller et al., 1998; Friml et al., 2002b). Thus, the various organ defects in *smt1orc* are strongly similar to defects in mutants and treatments that affect the efflux component of polar auxin transport. Together with the observed differences in the localization of PIN proteins but not AUX1, this finding suggests that defective PIN localization gives rise to many of the phenotypes observed in *smt1orc*.

The altered localization of the nucleus and amyloplasts in columella cells is not readily connected to PIN protein function, which may indicate that PIN proteins are not the only targets of SMT1-mediated cell polarity. PIN1 trafficking has been shown to be actin dependent (Geldner et al., 2001), and actin has been implicated in the localization of the nucleus and the amyloplasts (White and Sack, 1990), but *smt1orc* can respond to cytochalasin B and latrunculin B (data not shown), indicating that the cell polarity defects may not be explained by gross defects in the actin cytoskeleton. Because PIN proteins mark polarity changes but do not necessarily cause them, the nature of other sterol biosynthesis–sensitive targets required for cell polarity remains to be established.

Cell Polarity and Sterol Biosynthesis

It has been shown that the developmental consequences of mutations in sterol biosynthesis are profound (Diener et al., 2000; Schrick et al., 2000, 2002; Carland et al., 2002; Souter et al., 2002). Here, we extend these observations by linking sterol composition to cell polarity. *cvp-1, fackel* (*fk*), and *hydra1* (*hyd1*) mutants, which are defective in other enzymes of the sterol synthetic pathway, have not been characterized specifically with regard to cell polarity, but reported disturbances in cell division plane orientation (Schrick et al., 2000; Carland et al., 2002) and epidermal morphology (Souter et al., 2002) suggest the presence of polarity defects. However, PIN1 and PIN3 localize normally in *fk/hyd2* and *hyd1* (Souter et al., 2002). Recent evidence shows that a mutation in the yeast homolog ERG6,
which enhances ergosterol levels, leads to the mislocalization of proteins that normally are polarized (Bagnat and Simons, 2002). Perhaps the SMT1-specific side chain modification in the sterol biosynthetic pathway, which is associated with the high accumulation of cholesterol detected only in smt1 alleles to date, is similarly responsible for defects in protein localization. The lethality of the double mutants cph fk/hyd2 and cph hyd1 and different predictions for the localization of the potentially integral membrane proteins FK and HYD1 compared with SMT1 also suggest an independent function of SMT1 (Grebenok et al., 1998; Athenstaedt et al., 1999; Schrick et al., 2000, 2002).

The involvement of vesicle trafficking in PIN protein localization has been deduced from the defective localization of PIN1 observed in gn embryos. The smt1orc gnT391 double-mutant phenotype suggests that SMT1 can act in the absence of GN; hence, it is likely to act in a separate pathway. Furthermore, PIN1 and AUX1 localization are BFA sensitive, suggesting that both proteins are transported by ARF-dependent vesicles (Steinmann et al., 1999; Grebe et al., 2002). Together, the GN independence and the differential effect of the smt1orc mutation on PIN1 and AUX1 indicate that sterol biosynthesis does not influence protein localization at the vesicle transport level.

Altered membrane fluidity is a potential explanation for the disturbed distribution of membrane proteins in smt1orc. Plant sterol incorporation in human keratinocyte plasma membranes showed that sitosterol, like cholesterol, changed membrane fluidity and permeability (Mora et al., 1999). However, we observed no general smearing but rather discrete alterations in the localization of PIN proteins. Furthermore, preliminary experiments using fluorescence recovery after photobleaching in root hairs did not reveal membrane fluidity differences between smt1orc and the wild type (data not shown). Thus, at present, we have no indications that membrane fluidity changes underlie the inappropriate localization of PIN proteins.

Because membrane fluidity appears not to be affected and our double-mutant analysis yielded no evidence for smt1orc involvement in vesicle transport, the docking of proteins to specific membrane microdomains, or “lipid rafts,” may be affected (Carland et al., 2002). Models have been suggested in which sphingolipid-cholesterol rafts form within the Golgi and sort in a polar fashion to the plasma membrane, possibly using the sphingolipid-cholesterol rafts form within the Golgi and sort in a polar fashion to the plasma membrane, possibly using the NSF-SNAP-SNARE protein machinery for docking (Keller and Simons, 1998; Lafont et al., 1998, 1999). Membrane-associ- ated microdomains/rafs are cholesterol-dependent (Lang et al., 2001), and future experiments should determine whether AUX1 and PIN localization depends on similar sterol-dependent domains. Specific modulation of sterol biosynthesis through the manipulation of SMT1 may lead to further insights into the connection between sterols, cell polarity, and differential protein localization in plants.

METHODS

Plant Growth Conditions, Plant Strains, and Mutagenesis

The Arabidopsis thaliana orc mutant was generated by ethyl methane-sulfonate mutagenesis of ecotype Utr (Willenmsen et al., 1998). gnT391 was kindly provided by Gerd Jürgens (Tübingen, Germany). Enhancer trap lines J2341 and Q1650, as described at http://www.plantsci. cam.ac.uk/Haseloff/IndexCatalogue.html, were kindly provided by Jim Haseloff (Cambridge, UK). Promoter trap line QC46 was selected from the Institut National de la Recherche Agronomique T-DNA lines (Bechtold et al., 1993; Sabatini et al., 1999). The DR5-β-glucuronidase construct was described by Ullmasov et al. (1997). Homozygous smt1orc mutant plants were pollinated with the various mutant, enhancer, and promoter trap lines and analyzed in the homozygous lines of the F3 generation. Seeds were sterilized and plated, and seedlings were grown as described previously by Willemmsen et al. (1998). The smt1orc mutant was outcrossed twice to ecotype Utr before phenotypic analysis. Outcrossing to Landsberg erecta, Columbia, and C24 maintained all aspects of the phenotype, indicating that the Utr ecotype did not contribute to the orc phenotype. Whole-mount seedling analysis, embryo studies, and β-glucuronidase assays were performed as described previously (Willemmsen et al., 1998).

Map-Based Cloning

Homozygous orc plants were crossed to Landsberg erecta and Columbia. In the F2 generation, orc mutants were selected and DNA was isolated using a cetyl-trimethyl-ammmonium bromide method (Lukowitz et al., 1996). We initially mapped the SMT1 gene to chromosome 5 between markers nga 249 (23.7 centimorgan) and nga 151 (31 centimorgan). Nine hundred zygotic events were used for fine-mapping experiments. Primers were designed using information from the CEREON collection (http://www.arabidopsis.org/) and Primer 3 software (http:// www-genome.wi.mit.edu/cgi-bin/primer/primer3 www.cgi). The interval was narrowed to an interval of 100 kb that was located on three BACs (MSH12, MXE10, and MAC12). Using primers from this region, a transformation-competent artificial chromosome (TAC) vector library (Lui et al., 1993) (obtained from the ABRC Stock Center, Columbus, OH) was screened for overlapping clones in this region. TAC DNA was isolated, electrotransformed into Agrobacterium tumefaciens strain C58pMP90, and transformed into homozygous orc plants by the floral-dip method (Clough and Bent, 1998). Full complementation was found with TAC K12A16. From TAC K12A16, a HindIII fragment of 8.4 kb spanning open reading frame MSH12.18 (the complete genomic sequence) was isolated and transformed into the pGreen binary vector (Hellens et al., 2000) (http://www.pgreen.ac.uk) and used for single gene complementation. Total RNA of smt1orc seedlings was isolated using the Genta RNA isolation kit (Biozym, Landgraaf, The Netherlands), cDNA was isolated using Ready-to-Go beads (Amersharm/Pharmacia), and reverse transcriptase–mediated PCR was performed (Ready-to-Go; Amersharm/Pharmacia) using primers 5′-CTCCGATTCATCTTTATCCT-3′ (forward) and 5′-GCATTGTGACATGGTCA-3′ (reverse). The genomic and reverse transcriptase–mediated PCR fragments were sequenced using Big Dye Terminator (Gepnak Ltd.) on an ABI PRISM 310 genetic analyzer and analyzed using DNAStar software (Madison, WI).

<table>
<thead>
<tr>
<th>Genotype</th>
<th>No.</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type</td>
<td>489</td>
<td>57.9</td>
</tr>
<tr>
<td>smt1orc</td>
<td>157</td>
<td>18.6</td>
</tr>
<tr>
<td>gn</td>
<td>161</td>
<td>19.1</td>
</tr>
<tr>
<td>smt1orc gn</td>
<td>37</td>
<td>4.4</td>
</tr>
<tr>
<td>Total</td>
<td>844</td>
<td>100</td>
</tr>
</tbody>
</table>
Sterol Isolation and Quantification

Five-week-old flowering plants were ground in a blender with PBS for 2 min, and total lipid extract was isolated as described previously by Bligh and Dyer (1959). Sterols were purified from the total lipid extract using a silica 200 column. The different fractions were collected and characterized on silica 60 thin layer chromatography plates using phosphorus spray, and the sterol-containing fractions were subjected to gas chromatography–mass spectrometry analysis. Gas chromatography–mass spectrometry was performed under the following conditions: JEOL JMS-AX505W mass spectrometer and Hewlett-Packard 5890 series II gas chromatograph; DB-5MS column (30 m × 0.25 mm; J&W Scientific, Folsom, CA); injection temperature of 260°C; He as carrier gas; flow rate of 1 mL/min; and the following column temperature program: starting temperature of 200°C, increase of 8°C/min to 280°C, and 20 min at 280°C.

Quantification of Cell Polarity Parameters

Amyloplast and nuclear positions were studied in median longitudinal plastic sections prepared as described previously (Scheres et al., 1994, 1995). Amyloplasts were visualized by staining starch on plastic sections using 10% lugol in water and counterstained with 0.05% ruthenium red (Sigma). Only straight cells that aligned with the root axis were used for statistical analysis. The distribution of amyloplasts was determined by dividing the cell length in half to obtain the mid plane and counting the number of amyloplasts that had crossed the mid plane to the apical side. The position of the nucleus was determined as a ratio of the distance from the apical cell wall to the apical edge of the nucleus and the total cell size. Apical–basal hair polarity was determined in trichoblasts of 5-day-old seedlings grown on half-strength germination medium as described by Grebe et al. (2002).

Auxin Application

DR5::GUS *smt1*::AUX1 cells were grown for 3 days on half-strength germination medium and then transferred to fresh half-strength germination medium agar plates containing 0.5 or 5 μM 2,4-D. After continued growth for another 3 days, GUS expression was visualized.

Polar Auxin Transport Measurements

To standardize the experiment, only the most mature segments of primary wild-type and *smt1*::AUX1 inflorescences were taken, which were in contact with the rosette at their basal ends. The apical sites (Figures 4E and 4F, column A) of these segments were loaded with 3H–indoleacetic acid, and transport was allowed during 1.5 h. After transport, the stem sections were cut into three parts: A (apical), B (middle), and C (basal). Then, the amount of auxin transported was measured as described previously by Boot et al. (1999).

Quantification of the Gravitropic Response

Wild-type and *smt1*::AUX1 seedlings were grown vertically for 5 days on half-strength germination medium in light and then transferred to fresh half-strength germination medium agar plates in the dark with the root pointing downward. The plates were rotated 90°, and the seedlings continued to grow for another 24 h in the dark. Photographs were taken of the seedlings, and the angle of curvature was determined relative to the bottom (0°).

Immunolocalization

Immunolocalization was performed on whole-mount roots of 5-day-old seedlings as described previously by Gäfve et al. (1998), Swarup et al. (2001), and Friml et al. (2002a, 2002b).

Acknowledgments

We thank Ranjan Swarup and Malcolm Bennett for making available seeds of aux1-22 HA::AUX1; Martijn Koorenejev, Toon de Kroon, and Kees Versluis for technical assistance during sterol measurements and quantification; Jan-Willem Borst for technical assistance during fluorescence recovery after photobleaching experiments; Sabrina Sabatini, Renze Heidstra, Rolf Zeller, and David Welch for critical reading of the manuscript; Frits Kindt, Frouke Kuijer, Ronald Leito, Piet Brouwer, Wil Venendaal, and Pieter van Dorp van Vliet for artwork; and Kees Boot for help with the polar auxin transport measurements. B.S. is supported by a Pioneer grant from the Dutch Organization for Sciences, and M.G. is supported by a European Community Marie Curie postdoctoral fellowship (HPMF-CT-2000-0096).

Received October 9, 2002; accepted January 15, 2003.

References

Patterson, M.C., Di Bisceglie, A.M., Higgins, J.J., Abel, R.B.,

