ON THE COVER

Diversification of MADS box genes has been proposed as a major driving force for floral diversity in land plants. Yamaguchi et al. (pages 15–28) investigate the functions of rice OSMADS3 and OSMADS58, homologs of Arabidopsis AGAMOUS, a C-class MADS box gene that regulates stamen and carpel identity and floral meristem determinacy. The authors show that disruption of OSMADS3 in a T-DNA insertion line results in homotic transformation of stamens into lodicules and the ectopic development of lodicules in the second whorl. By contrast, RNA-silenced lines of OSMADS58 developed flowers that reiterated lodicules, stamens, and carpel-like organs, suggesting loss of determinacy in the floral meristem. The results suggest that functions regulated by AGAMOUS in Arabidopsis have been partially sub-functionalized during the evolution of rice into two paralogous genes, OSMADS3 and OSMADS58, which arose from a recent gene duplication event. In addition, the development of ectopic lodicules in OSMADS3 loss-of-function mutants points to a role for C-class genes in the asymmetric distribution of lodicules in the rice flower.

IN THIS ISSUE
Identification of Rust Fungi Avirulence Elicitors
Nancy A. Eckardt

CURRENT PERSPECTIVE ESSAY
The Structure of Phytochrome: A Picture Is Worth a Thousand Spectra
Nathan C. Rockwell and J. Clark Lagarias

RESEARCH ARTICLES
Functional Diversification of the Two C-Class MADS Box Genes OSMADS3 and OSMADS58 in Oryza sativa
Takahiro Yamaguchi, Dong Yeon Lee, Akio Miyao, Hikohiko Hirochika, Gynheung An, and Hiro-Yuki Hirano

A New Role for the Arabidopsis AP2 Transcription Factor, LEAFY PETIOLE, in Gibberellin-Induced Germination Is Revealed by the Misexpression of a Homologous Gene, SOB2/DRN-LIKE
Jason M. Ward, Alison M. Smith, Purvi K. Shah, Sarah E. Galanti, Hankuil Yi, Agnes J. Demianski, Eric van der Graaff, Beat Keller, and Michael M. Neff

Arabidopsis Cytokinin Receptor Mutants Reveal Functions in Shoot Growth, Leaf Senescence, Seed Size, Germination, Root Development, and Cytokinin Metabolism
Michael Riefler, Ondrej Novak, Miroslav Strnad, and Thomas Schmülling

Arabidopsis Response Regulators ARR3 and ARR4 Play Cytokinin-Independent Roles in the Control of Circadian Period
Patrice A. Salomé, Jennifer P.C. To, Joseph J. Kieber, and C. Robertson McClung

Arabidopsis CONSTANS-LIKE3 Is a Positive Regulator of Red Light Signaling and Root Growth
Sourav Datta, G.H.C.M. Hettiarachchi, Xing-Wang Deng, and Magnus Holm

ROR1/RPA2A, a Putative Replication Protein A2, Functions in Epigenetic Gene Silencing and in Regulation of Meristem Development in Arabidopsis
Ran Xia, Jinguo Wang, Chunyan Liu, Yu Wang, Youqun Wang, Jixian Zhai, Jun Liu, Xuhui Hong, Xiaofeng Cao, Jian-Kang Zhu, and Zhizhong Gong

The Temperature-Dependent Change in Methylation of the Antirrhinum Transposon Tam3 Is Controlled by the Activity of Its Transposase
Shin-Nosuke Hashida, Takako Uchiyama, Cathie Martin, Yuji Kishima, Yoshio Sano, and Tetsuo Mikami