CALL FOR PAPERS:

Plant Physiology Focus Issue on Legume Biology

Deadline for Submissions: February 1, 2007
To submit an article, please go to http://submit.plantphysiol.org.

Plant Physiology is pleased to announce a Focus Issue on Legume Biology to be published in June 2007. The issue will be edited by Carroll Vance and Mark O’Brien. Submissions in all topics of legume biology are welcome, including genomics, model legumes, interactions with microorganisms, nutrient acquisition and metabolism, regulation, signaling, and development.

Authors interested in contributing should indicate this in the cover letter when submitting papers online at http://submit.plantphysiol.org/. Please select “Legumes (June, 2007)” from the Focus Issue list in the online submission system. Articles published within 2 years before and after the Focus Issue will be considered for inclusion in an online Focus Collection of articles relevant to the focus topic.

Please contact Carroll Vance (vance004@tc.umn.edu) or Mark O’Brien (mrobrian@buffalo.edu) for additional information.
There are more reasons than ever to become a member of ASPB!

Beginning with the January 2007 issue of Plant Physiology, corresponding authors who are members at the time of submission will get their article made freely available online and their first color figure free. The journal's Open Access feature, Real-Time Plant Physiology, means that anyone with an Internet connection will have instant access to the full-text, final article as soon as it is published (non-members can still purchase this option; see http://www.aspb.org/publications/openaccess.cfm for details).

Other benefits of membership in ASPB include

- A $20/page discount on page charges for articles published in Plant Physiology and The Plant Cell (corresponding author must be a member)
- Free electronic access to both journals and a discount on print subscriptions
- Discounted registration for ASPB meetings
- ASPB's bimonthly newsletter, the ASPB News
- Member prices for ASPB publications
- Access to the online membership directory
- Abstract submission for ASPB's annual meeting.

All these benefits and cost savings can be enjoyed for only $115 for regular members, $65 for postdocs, and $45 for students. For more information or to join now, go to http://www.aspb.org/memberjoin/?js=pcprint.

There are numerous reasons why modern microbiology laboratories are shifting their media-making operations from traditional manual methods to state-of-the-art, automated methods through the use of specialized equipment. Preparing media manually consists of measuring the appropriate amount of dehydrated culture media (DCM) and water in flasks, heating and stirring the mixture, sterilizing inside an autoclave, then dispensing aseptically into Petri dishes, tubes and/or bottles. This method is labor-intensive and presents several operational uncertainties. Is the media concentration and consistency correct? How can sterilization be insured? Is contamination occurring during the filling stage? Automating this process resolves these uncertainties while providing the added benefits of improved product quality and efficiency.

The Systec MediaPrep system combines stirring, sterilization and pouring into one, precisely controlled process. After adding the desired amount of media and water, the MediaPrep will engage a magnetic stirrer and sterilize for a user-defined temperature and time. Temperature and time measurements are recorded through the use of a PT100 temperature probe placed directly in the media. This accurately assesses when the media has reached sterilization temperature. Autoclaving media in flasks is problematic as most autoclaves register the temperature inside the chamber, and not the media. The MediaJet can also be programmed to hold the sterilized media at a user-defined temperature for optimal dispensing conditions.

The Systec MediaJet can be directly connected to the MediaJet plate pourer, to eliminate risks of secondary contamination during dispensing. The MediaJet is designed to pour directly into deep-dish plates or tubes with a capacity of up to 900 plates per hour and true "walk away" automation. This is an industry-first feature with specific applications for plant research. MediaJet features also include a Pelletier cooling device which helps minimize plate condensation formation; a UV lamp which extends over the full length of the rotor where the dishes are opened during dispensing, eliminating the possibility of contamination during filling. An optional inkjet printer for labeling/barcoding directly on the sides of dishes is available for complete traceability. Utilization of automated media preparation increases sample throughput, quality of plates, efficiency, reproducibility and productivity.

For more information: