TPATE is a potential cytokinesis protein that is targeted to the cell plate. Van Damme et al. (pages 3502–3518) show that in Arabidopsis, a T-DNA insertion in TPLATE leads to the production of shriveled pollen that is unable to germinate. Vesicular compartmentalization of the mature pollen is dramatically altered, and large deposits of callose accumulate near the intine cell wall layer. Localization with GFP-fused TPLATE showed that the protein accumulates at the cell plate and is temporally targeted to a narrow zone at the cell cortex where the cell plate connects to the mother wall. The authors conclude that TPLATE functions in vesicle trafficking events required for site-specific cell wall modifications taking place during pollen germination and the anchoring of the cell plate to the mother wall. The developing cell plate fails to correctly attach to the mother wall.

ON THE COVER

TPATE is a potential cytokinesis protein that is targeted to the cell plate. Van Damme et al. (pages 3502–3518) show that in Arabidopsis, a T-DNA insertion in TPLATE leads to the production of shriveled pollen that is unable to germinate. Vesicular compartmentalization of the mature pollen is dramatically altered, and large deposits of callose accumulate near the intine cell wall layer. Localization with GFP-fused TPLATE showed that the protein accumulates at the cell plate and is temporally targeted to a narrow zone at the cell cortex where the cell plate connects to the mother wall. The authors conclude that TPLATE functions in vesicle trafficking events required for site-specific cell wall modifications taking place during pollen germination and the anchoring of the cell plate to the mother wall. The developing cell plate fails to correctly attach to the mother wall.

IN THIS ISSUE

The Contributions of Anthony B. Bleecker to Ethylene Signaling and Beyond 3347
Edgar P. Spalding

A Genomic Analysis of Tumor Development and Source-Sink Relationships in Agrobacterium-Induced Crown Gall Disease in Arabidopsis 3350
Nancy A. Eckardt

IN BRIEF

Three Arabidopsis GID1 Genes Encode Gibberellin Receptors with Overlapping Functions 3353
Nancy A. Eckardt

A Family of Novel Monosaccharide Transporters Involved in Vacuolar Sugar Transport in Arabidopsis 3362
Nancy A. Eckardt

RESEARCH ARTICLES

A Family of MicroRNAs Present in Plants and Animals 3355
Mario Arteaga-Vázquez, Juan Caballero-Pérez, and Jean-Philippe Vielle-Calzada

Defects in CTP:PHOSPHORYLETHANOLAMINE CYTIDYLTRANSFERASE Affect Embryonic and Postembryonic Development in Arabidopsis 3370
Junya Mizio, Masanobu Nakamura, and Ikuo Nishida

Arabidopsis DCP2, DCP1, and VARICOSE Form a Decapping Complex Required for Postembryonic Development 3386
Jun Xu, Jun-Yi Yang, Qi-Wen Niu, and Nam-Hai Chua

Genetic Characterization and Functional Analysis of the GID1 Gibberellin Receptors in Arabidopsis 3399

KEEP ON GOING, a RING E3 Ligase Essential for Arabidopsis Growth and Development, Is Involved in Abscisic Acid Signaling 3415
Sophia L. Stone, Luis A. Williams, Lisa M. Farmer, Richard D. Vierstra, and Judy Callis

Identification of Important Regions for Ethylene Binding and Signaling in the Transmembrane Domain of the ETR1 Ethylene Receptor of Arabidopsis 3429
Wuyi Wang, Jeff J. Esch, Shin-Han Shiu, Hasi Agula, Brad M. Binder, Caren Chang, Sara E. Patterson, and Anthony B. Bleecker

Dynamics of a Mobile RNA of Potato Involved in a Long-Distance Signaling Pathway 3443
Anjan K. Banerjee, Mithu Chatterjee, Yueyue Yu, Sang-Gon Suh, W. Allen Miller, and David J. Hannapel

ON THE COVER

TPLATE is a potential cytokinesis protein that is targeted to the cell plate. Van Damme et al. (pages 3502–3518) show that in Arabidopsis, a T-DNA insertion in TPLATE leads to the production of shriveled pollen that is unable to germinate. Vesicular compartmentalization of the mature pollen is dramatically altered, and large deposits of callose accumulate near the intine cell wall layer. Localization with GFP-fused TPLATE showed that the protein accumulates at the cell plate and is temporally targeted to a narrow zone at the cell cortex where the cell plate connects to the mother wall. The authors conclude that TPLATE functions in vesicle trafficking events required for site-specific cell wall modifications taking place during pollen germination and the anchoring of the cell plate to the mother wall. The developing cell plate fails to correctly attach to the mother wall.
Structural Basis for Dual Functionality of Isoflavonoid O-Methyltransferases in the Evolution of Plant Defense Responses
Chang-Jun Liu, Bettina E. Deavours, Stephane B. Richard, Jean-Luc Ferrer, Jack W. Blount, David Huhman, Richard A. Dixon, and Joseph P. Noel

The Coactivator Function of Arabidopsis NPR1 Requires the Core of Its BTB/POZ Domain and the Oxidation of C-Terminal Cysteines
Amanda Rochon, Patrick Boyle, Tracy Wignes, Pierre R. Fobert, and Charles Despres

A Multidrug Resistance Transporter in Magnaporthe Is Required for Host Penetration and for Survival during Oxidative Stress
Chuan Bao Sun, Angayarkanni Suresh, Yi Zhen Deng, and Naweed I. Naqvi

Nonenzymatic Lipid Peroxidation Reprograms Gene Expression and Activates Defense Markers in Arabidopsis Tocopherol-Deficient Mutants
Scott E. Sattler, Laurent Me-ne-Saffrane, Edward E. Farmer, Markus Krischke, Martin J. Mueller, and Dean DellaPenna

Phytotoxicity and Innate Immune Responses Induced by Nep1-Like Proteins
Dinah Qutob, Birgit Kemmerling, Frederic Brunner, Isabell Kufner, Stefan Engelhardt, Andrea A. Gust, Borries Lubrracki, Hans Ulrich Seitz, Dietmar Stahl, Thomas Rauhut, Erich Glawischning, Gabriele Schween, Benoit Lacombe, Naohide Watanabe, Eric Lam, Rita Schlichting, Dierk Scheel, Katja Nau, Gabriele Dodt, David Hubert, Mark Gijzen, and Thorsten Nurnberger

Online version contains Web-only data.

Open Access articles can be viewed online without a subscription.