ramsoa2 Encodes a LATERAL ORGAN BOUNDARY Domain Protein That Determines the Fate of Stem Cells in Branch Meristems of Maize\textcopyright

Esteban Bortiri,a George Chuck,a Erik Vollbrecht,b Torbert Rocheford,c Rob Martienssen,d and Sarah Hakea,1

aPlant Gene Expression Center, U.S. Department of Agriculture–Agricultural Research Service, Plant and Microbial Biology Department, University of California, Albany, California 94770
bDepartment of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
cUniversity of Illinois, Urbana, Illinois 61801
dCold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724

Genetic control of grass inflorescence architecture is critical given that cereal seeds provide most of the world’s food. Seeds are borne on axillary branches, which arise from groups of stem cells in axils of leaves and whose branching patterns dictate most of the variation in plant form. Normal maize (Zea mays) ears are unbranched, and tassels have long branches only at their base. The ramsoa2 (ra2) mutant of maize has increased branching with short branches replaced by long, indeterminate ones. ra2 was cloned by chromosome walking and shown to encode a LATERAL ORGAN BOUNDARY domain transcription factor. ra2 is transiently expressed in a group of cells that predicts the position of axillary meristem formation in inflorescences. Expression in different mutant backgrounds places ra2 upstream of other genes that regulate branch formation. The early expression of ra2 suggests that it functions in the patterning of stem cells in axillary meristems. Alignment of ra2-like sequences reveals a grass-specific domain in the C terminus that is not found in Arabidopsis thaliana. The ra2-dm allele suggests this domain is required for transcriptional activation of ra1. The ra2 expression pattern is conserved in rice (Oryza sativa), barley (Hordeum vulgare), sorghum (Sorghum bicolor), and maize, suggesting that ra2 is critical for shaping the initial steps of grass inflorescence architecture.

INTRODUCTION

Plant organogenesis is controlled by meristems, groups of stem cells located at the tips of shoots and roots. Meristems produce cells that give rise to all plant organs but also set aside a population of cells in order to perpetuate themselves. The balance of these two processes, organogenesis and self-perpetuation, guarantees prolonged activity, and such a meristem is said to be indeterminate. The activity of indeterminate meristems gives rise to shoots and branches capable of continued growth. By contrast, determinate meristems, such as those that produce flowers, are consumed after making a certain number of organs (Steeves and Sussex, 1989).

Plant architecture results from activity of the shoot apical meristem, located at the tip of the growing shoot, and axillary meristems, which form in the axils of leaves. During the vegetative phase of growth, leaves are often large and axillary meristems small or dormant. Following environmental and endogenous cues, the shoot apical meristem undergoes a transition to become a reproductive meristem, referred to as an inflorescence meristem. Leaves produced from the inflorescence meristem are often reduced, while axillary meristems become dominant. Flowers, which derive from modified axillary meristems, are borne either directly on the main inflorescence axis or on branches. Variation in the number of branches and their growth potential produces a great diversity of inflorescence morphologies, a striking feature of flowering plants (Weberling, 1989).

Members of the grass family (Poaceae) display a wide array of inflorescence forms that range from the spikes of wheat (Triticum aestivum) and barley (Hordeum vulgare) to the more branched tassels of maize (Zea mays) and sorghum (Sorghum bicolor). The basic unit of grass inflorescence architecture is the spikelet, a compact axillary branch that consists of two bracts subtending one to several reduced flowers (Clifford, 1987). Maize is a monoecious plant that produces male flowers on a terminal tassel and female flowers on lateral ears, which arise in the axils of vegetative leaves. The tassel consists of a main spike with several long, indeterminate branches at the base (Figure 1A), and the ear consists of a single spike with no long branches (Figure 1D). The tassel’s main spike and branches, and the entire ear, bear short branches (spikelet pairs) that give rise to two spikelets. In maize, spikelet and spikelet pair meristems are considered determinate because they produce a defined number of structures.

Maize has long been the subject of genetic research, resulting in a large collection of mutants (Neuffer et al., 1997), many of which are characterized by defects in the timing or location of branch initiation. One such mutation, ramsoa2 (ra2), was cloned and shown to encode a LATERAL ORGAN BOUNDARY domain protein that is required for transcriptional activation of an upstream of other genes that regulate branch formation. The early expression of ra2 suggests that it functions in the patterning of stem cells in axillary meristems. Alignment of ra2-like sequences reveals a grass-specific domain in the C terminus that is not found in Arabidopsis thaliana. The ra2-dm allele suggests this domain is required for transcriptional activation of ra1. The ra2 expression pattern is conserved in rice (Oryza sativa), barley (Hordeum vulgare), sorghum (Sorghum bicolor), and maize, suggesting that ra2 is critical for shaping the initial steps of grass inflorescence architecture.
which alter specific stages of inflorescence development (reviewed in McSteen et al., 2000). One group of mutants shows a decreased production of branches and/or spikelet pairs, such as *liguleless2* (Walsh and Freeling, 1999), *barren stalk1* (*ba1*) (Gallavotti et al., 2004), *barren inflorescence1* (*bif1*), and *bif2* (McSteen and Hake, 2001). The opposite phenotype is observed in the *ramosa1* (*ra1*), *ra2*, and *ra3* mutants, which have tassels with an increased number of long branches as well as branched ears (Vollbrecht et al., 2005), and *branched silkless1* and *indeterminate spikelet1*, which affect determinacy of the spikelet meristem (Chuck et al., 1998, 2002).

Here, we report the positional cloning and characterization of *ra2*, a recessive mutant first described in 1935 (Emerson et al., 1935). *ra2* codes for a putative transcription factor with a LAT-ERAL ORGAN BOUNDARY (LOB) domain that is highly conserved among other plants, including *Arabidopsis thaliana*, rice (*Oryza sativa*), barley, and sorghum. *ra2* is expressed in the cells that will produce axillary meristems in maize inflorescences, marking the site of meristem initiation. Levels of *ra1*, which impose determinate fate specifically on spikelet pair meristems, are reduced in *ra2* mutants (Vollbrecht et al., 2005), except in the *ra2-dm* allele that putatively makes a C terminus–only RA2 protein. Based on its expression pattern and the phenotype of loss-of-function mutants, we suggest that *ra2* controls multiple aspects of inflorescence architecture by limiting growth of axillary meristems from their inception. Our data suggest that *ra2* carries out that function, in part, by promoting *ra1* expression in the developing inflorescence.

RESULTS

Inflorescences of *ra2* Mutants Have Branches with Increased Indeterminacy

In order to analyze the *ra2* mutant phenotype, we examined three mutant alleles in defined inbred backgrounds. *ra2-R* was introgressed into B73 and A188, *ra2-dm* was found in W22 and further introgressed into that inbred, and *ra2-mum4* was introgressed twice into A188. The most consistent tassel phenotype of *ra2* mutants is a change in the branch organization of the tassel. Tassels of *ra2* mutants have similar numbers of long branches but fewer spikelet pairs. Instead, they have mixed branches that contain both spikelet pairs and single spikelets as well as spikelet multimers, which bear more than two single spikelets (Figure 1C). Although spikelet multimers are also formed in wild-type tassels, they are less frequent and rarely contain more than three spikelets. Thus, a typical *ra2* mutant tassel shows an abnormal, gradual transition from long branches to spikelet pairs, with the branches becoming increasingly shorter toward the inflorescence apex (Figure 2, Table 1). Higher orders of branching are also altered in *ra2-R*, as seen by an increase in number of branches that bear secondary branches and by the total number of secondary branches (Table 2). Finally, for all *ra2* mutant alleles, the spikelet pair pedicel is longer, and the angle at which branches are borne with respect to the main inflorescence rachis (Figure 1B) is more acute relative to the wild type (Table 3).

The female inflorescence of maize, the ear, develops according to a branching program similar to that of the tassel except the ear does not form long branches (Figure 1D). Spikelet pair meristems initiate on the flanks of the ear tip in a regular pattern (Figure 1G) and give rise to two spikelet meristems (Figure 1H). Ears of all three *ra2* mutant alleles have disorganized rows of kernels (Figure 1I), and in *ra2-R* and *ra2-dm* several long branches are formed (Figure 1F). Spikelet triplets (instead of the typical pair of spikelets) and branches are formed in *ra2* mutant ears, reflecting increased indeterminacy of the meristem (Figures 1H and 1J). Ears of the *ra2-mum4* allele do not form branches, and the only ear phenotype is row disorganization (Figure 1E). Thus, inflorescence branches of *ra2* mutants show additional branching and loss of determinacy in both ear and tassel.
Figure 2. Tassel Branching Patterns in A188, B73, and W22 Maize Inbred Lines and ra2 Mutants.

(A) The distribution of axillary meristem fates in tassels of ra2 alleles and inbred lines. The area of each class of branch represents its percentage of all tassel branches. Single spikelets were only found in W22 and W22-introgressed families. See Table 1 for error values and significance of a t test.

(B) and (C) A simplified schematic showing the change in branch determinacy imposed on branches of ra2 mutant tassels.

(B) A wild-type tassel, consisting mainly of spikelet pair–bearing branches at the bottom and spikelet pairs directly on the main axis above.

(C) A typical ra2 tassel showing mixed branches and spikelet multimers that gradually become spikelet pairs toward the apex. Branch angle difference is not illustrated.

Positional Cloning of ra2

We initially mapped ra2 to a region of chromosome 3 (bin 3.04) between restriction fragment length polymorphism (RFLP) markers asg48 (proximal) and mmp186 (distal). Two flanking markers were used to screen for recombinants among 1069 backcrossed progeny (A188/ra2-R × ra2-dm/ra2-dm). To find additional markers closer to ra2, we assumed conserved synteny between maize and rice and searched for rice genes between the maize region containing asg48 and mmp186 homologs. The rice homologs to maize ra2 linkage to mmp186 markers derived from rice genes in the maize region containing asg48 was a small insertion in a region of otherwise completely conserved synteny between rice and maize (Figure 3B).

One of the genes tightly linked to the ra2 phenotype (0/1069 recombinants) encoded a protein predicted to carry a LOB domain (Iwakawa et al., 2002; Shuai et al., 2002). We found two maize EST contigs (TC278100 and TC254099) that showed high sequence similarity to the 5′ and 3′ regions of the rice LOB gene and a 2.7-kb genomic contig (MAGI-27324) that spanned the entire gene. This gene is predicted to have two introns and an open reading frame (ORF) in the second exon based on alignment of the EST and genomic contigs (Figure 3B). A 6-kb EcoRI fragment containing ra2 was subcloned from a BAC to identify the entire ORF as well as upstream and downstream sequences. The ORF of ra2 contains a Cys repeat (Cx2Cx3Cx2C), a GAS block, and a Leu-zipper motif (Figure 3C), features conserved in all LOB genes (Iwakawa et al., 2002; Shuai et al., 2002). An additional domain that is conserved in the C terminus of ra2 homologs from grass species is not shared with Arabidopsis.

The maize LOB gene was sequenced from several inbred lines and our ra2 mutant alleles. The ra2-R allele has an 8-bp insertion that introduces a stop codon within the LOB domain. The ra2-dm allele, which arose from a Mutator (Mu) transposon population, has an 1171-bp deletion that eliminates part of the first intron and second exon, including all of the sequence that encodes the LOB domain. The ra2-mum4 allele, which also arose in a Mu population, contains a single base pair mutation in the LOB domain that introduces an Arg-to-His amino acid change in a putative nuclear localization signal (Figures 3B and 3C). The Arg amino acid is conserved in all ra2 orthologs examined (rice, barley, sorghum, and Arabidopsis). Two more alleles were generated by Mu-targeted transposition, ra2-mum1 and ra2-mum2, both of which contain Mu insertions in the first intron (Figure 3B). The molecular nature of the alleles correlates with their phenotype; the two alleles with the strongest ear phenotype have an early stop codon (ra2-R) or a deletion in the LOB domain (ra2-dm), while the weak allele, ra2-mum4, has a single amino acid change in a conserved domain. This collection of independent mutant alleles implies that the maize LOB gene is in fact ra2.

ra2 Is Expressed in the Anlagen of Inflorescence Axillary Meristems

To examine the expression of ra2, hybridization of RNA gel blots from tissues of wild-type and ra2 mutant alleles was performed using a gene-specific probe (eb3 in Figure 3B). ra2 is expressed in ears and tassels of wild-type maize (Figure 4). Wild-type seedlings and roots have no significant expression of ra2. Levels of ra2 transcript are very low in ra2-R tassels, indicating that it may be a null allele. ra2-dm inflorescences make a shorter transcript because of the ~1.2-kb deletion, and ra2-mum4 mutant tassels have normal levels of ra2 transcript. A weak
band of higher molecular weight was observed in some lanes that could be the product of alternative splicing.

In situ hybridization was performed to examine the tissue localization of ra2 expression using a full-length ra2 RNA probe (ra2full in Figure 3B). ra2 is expressed in developing tassels in a group of cells that predicts the position of the bract and spikelet pair meristem (Figures 5A and 5C). Closely examination of ra2 expression in young tassels allowed us to determine that ra2 is expressed in the axillary meristem above the inflorescence bracts (Figure 5H). Expression continues transiently as the spikelet pair meristem initiates and then diminishes as the meristem grows. Expression is observed again after the meristem enlarges, at the position where the spikelet pair meristem grows. Expression is observed after the meristem has been initiated and then diminishes as the meristem grows. Expression is observed again after the meristem has been initiated and then diminishes as the meristem grows.

Table 1. The Fate of Tassel Primordia Measured in Different ra2 Alleles and Inbred Lines

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Total Primordiaa</th>
<th>Main Branchesb</th>
<th>Mixed Branchesb</th>
<th>Spikelet Multimersb</th>
<th>Spikelet Pairsb</th>
<th>Single Spikeletsb,c</th>
</tr>
</thead>
<tbody>
<tr>
<td>A188</td>
<td>80.6 ± 9.4</td>
<td>0.07 ± 0.02</td>
<td>0.13 ± 0.03</td>
<td>0.038 ± 0.02</td>
<td>0.74 ± 0.03</td>
<td>–</td>
</tr>
<tr>
<td>ra2-R, B73-3d</td>
<td>100.8 ± 16.0</td>
<td>0.12 ± 0.06</td>
<td>0.19 ± 0.07</td>
<td>0.21 ± 0.10</td>
<td>0.46 ± 0.09</td>
<td>–</td>
</tr>
<tr>
<td>P</td>
<td><0.01</td>
<td>0.028</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>B73</td>
<td>81.1 ± 17.2</td>
<td>0.078 ± 0.02</td>
<td>0.0017 ± 0.0004</td>
<td>0.022 ± 0.02</td>
<td>0.9 ± 0.03</td>
<td>–</td>
</tr>
<tr>
<td>ra2-R, A188-3f</td>
<td>68.1 ± 13.7</td>
<td>0.1 ± 0.04</td>
<td>0.07 ± 0.04</td>
<td>0.35 ± 0.10</td>
<td>0.4 ± 0.13</td>
<td>–</td>
</tr>
<tr>
<td>P</td>
<td><0.01</td>
<td>0.074</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>W22/ra2-dm</td>
<td>99.6 ± 15.5</td>
<td>0.12 ± 0.03</td>
<td>0.023 ± 0.03</td>
<td>0.044 ± 0.03</td>
<td>0.54 ± 0.08</td>
<td>0.26 ± 0.13</td>
</tr>
<tr>
<td>ra2-dm</td>
<td>75.6 ± 7.6</td>
<td>0.078 ± 0.02</td>
<td>0.13 ± 0.05</td>
<td>0.26 ± 0.08</td>
<td>0.19 ± 0.03</td>
<td>0.03 ± 0.009</td>
</tr>
<tr>
<td>P</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td>0.19</td>
</tr>
<tr>
<td>+/-ra2-mum4</td>
<td>99.9 ± 10.7</td>
<td>0.17 ± 0.02</td>
<td>0.022 ± 0.01</td>
<td>0.029 ± 0.01</td>
<td>0.77 ± 0.03</td>
<td>–</td>
</tr>
<tr>
<td>ra2-mum4</td>
<td>81.2 ± 9.9</td>
<td>0.13 ± 0.04</td>
<td>0.084 ± 0.02</td>
<td>0.11 ± 0.06</td>
<td>0.67 ± 0.07</td>
<td>–</td>
</tr>
<tr>
<td>P</td>
<td><0.01</td>
<td>0.019</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
</tbody>
</table>

aTotal number of primordia on the tassel main axis (average of >12 individuals).
bRatio of the number of primordia that produce a specific kind of lateral organ (main branch, mixed branches, spikelet multimers, spikelet pairs, and single spikelets) to the total number of primordia.
cSingle spikelets were only found in the W22 inbred line and in ra2-dm segregating families, all of which are in a W22 background.
dra2-R was introgressed into B73 more than three generations.
eSignificant values of the t test at P = 0.01 are in bold.

Table 2. Degree of Branching in Inbred Lines and ra2 Alleles

<table>
<thead>
<tr>
<th>Genotype</th>
<th>No. of Branched Branches</th>
<th>No. of Secondary Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>A188</td>
<td>0.4 ± 0.6</td>
<td>0.4 ± 0.6</td>
</tr>
<tr>
<td>ra2-R, A188-3</td>
<td>1.2 ± 1.3</td>
<td>1.3 ± 1.4</td>
</tr>
<tr>
<td>P</td>
<td>0.038</td>
<td>0.023</td>
</tr>
<tr>
<td>B73</td>
<td>1.5 ± 0.6</td>
<td>1.6 ± 0.6</td>
</tr>
<tr>
<td>ra2-R, B73-3</td>
<td>2.5 ± 0.7</td>
<td>7.0 ± 2.2</td>
</tr>
<tr>
<td>P</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>+/-ra2-dm</td>
<td>4.1 ± 1.6</td>
<td>7.5 ± 1.6</td>
</tr>
<tr>
<td>ra2-dm</td>
<td>5.3 ± 1.5</td>
<td>20.3 ± 7.1</td>
</tr>
<tr>
<td>P</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>+/-ra2-mum4</td>
<td>2.2 ± 1.1</td>
<td>3.0 ± 1.7</td>
</tr>
<tr>
<td>ra2-mum4</td>
<td>2.1 ± 0.9</td>
<td>3.3 ± 1.6</td>
</tr>
<tr>
<td>P</td>
<td>0.721</td>
<td>0.692</td>
</tr>
</tbody>
</table>

aSignificant values of the t test at P = 0.01 are in bold.
The pattern of expression of *ra2* in tassels of *ra1-R* (Figure 5J) and *ra3-R* mutants (Figure 5J), suggesting that *ra2* is not dependent on either *ra1* or *ra3*. To find out whether *ra2* and *ra1* expression overlap, we performed in situ hybridization of *ra1* in wild-type tassels using the probe described by Vollbrecht et al. (2005). The overlap, we performed in situ hybridization of *ra1* with the sequence and expression pattern of *ra2* significantly reduced in *ra2-R* mutants. Indeed, our RNA gel blots suggest an important role for *ra1* expression is significantly reduced in *ra2-R* mutants. We also performed RNA gel blot analysis of *ra1* expression in a *ra1* mutant and vice versa. As shown in Figure 4 (top panel, lane 8), *ra2* expression is not greatly affected in *ra1* mutants. By contrast, Vollbrecht et al. (2005) reported that *ra1* expression is significantly reduced in *ra2-R* mutants. Indeed, our RNA gel blots show that *ra1* is significantly reduced in *ra2-R* and *ra2-mum4* mutants (Figure 4, middle panel, lanes 5 to 7), However, *ra1* is still expressed in ears of *ra2-dm* (Figure 4, middle panel, lane 6), which putatively makes a truncated protein consisting of only the last 59 amino acids (Figure 3B). This result would suggest that the C-terminal domain of *RA1* is sufficient for *ra1* transcript accumulation. The hypothesis that *ra2* is required for *ra1* expression fits with the RNA gel blot analysis as well as the timing of expression; *ra2* is expressed earlier than *ra1*, and their expression patterns overlap briefly (Vollbrecht et al., 2005).

DISCUSSION

ra2 mutants produce inflorescence branches with increased indeterminacy or meristematic potential. We cloned *ra2* by positional cloning and determined that it encodes a LOB domain protein. Multiple alleles provided proof that the gene was cloned. *ra2* is expressed early in the inflorescence in cells that predict the position of axillary meristem initiation. The expression in different mutant backgrounds places *ra2* upstream of other branch regulators. Conservation of sequence and expression pattern in other grass species suggests that *ra2* plays a critical role in the architecture of all grass inflorescences.

Positional Cloning of *ra2* Demonstrates That It Encodes a LOB Domain Protein

We undertook positional cloning to characterize the *ra2* gene, given the recent developments in maize genomic tools (Rabinowicz et al., 1999; Palmer et al., 2003; Yuan et al., 2003) and sequencing of the rice genome (Sasaki et al., 2002; International Rice Genome Sequencing Project, 2005). The strategy relies on the hypothesis that the relative order of genes is conserved among distantly related grass species (Moore et al.,

Table 3. Branch Angle and Length of Pedicel in *ra2* Compared with Normal Tassels

Genotype	Tassel Height (cm)	First Tassel Branch Angle	Second Tassel Branch Angle	Pedicel Length (cm)	p
A188	32.6 ± 1.5	64.4 ± 26.5	80.2 ± 24.4	0.5 ± 0.6	
ra2-R, A188-3	36.5 ± 8.6	19.2 ± 16.6	24.06 ± 22.1	12.0 ± 2.5	
P	0.103	<0.01	<0.01	<0.01	
B73	26.5 ± 4.5	5.4 ± 2.5	13.3 ± 7.8	1.1 ± 0.9	
ra2-R, B73-3	23.3 ± 1.6	4.2 ± 2.2	5.6 ± 2.7	10.8 ± 3.0	
P	0.017	0.148	<0.01	<0.01	
W22/ra2-dm	26.3 ± 2.05	30.3 ± 15.5	36.1 ± 18.1	7.8 ± 5.6	
ra2-dm	26.4 ± 2.29	11.4 ± 5.3	12.4 ± 8.3	16.4 ± 3.3	
P	0.83	<0.01	<0.01	<0.01	
+/ra2-mum4	31.3 ± 2.9	60.1 ± 25.2	74.3 ± 20.1	0.6 ± 1.2	
ra2-mum4	33.5 ± 3.4	14.1 ± 13.5	9.3 ± 5.6	7.7 ± 4.7	
P	0.094	<0.01	<0.01	<0.01	

Corresponds to the average length of the pedicels subtending the first five spikelet pairs.

Significant values of the t test at P = 0.01 are in bold.

The Pattern of *ra2* Expression Is Conserved among Grasses

The coding sequence of *ra2* is highly conserved among rice, barley, sorghum, and maize (Figure 3C). In order to examine the variation in *ra2* expression among grasses, in situ hybridizations were performed. Sorghum is more closely related to maize and also has spikelet pairs; however, the primary axis of the sorghum inflorescence bears indeterminate branches, and spikelet pairs are borne on branches of second and third order. Rice, a distant relative of maize, makes inflorescences that branch once to make second-order branches that bear multiple single spikelets. In contrast with those grasses, barley produces inflorescences without branches, and the single spikelets are borne directly on the main axis. Similar to the expression pattern in maize, *ra2* is expressed transiently in each anlagen of multiple axillary meristem types of sorghum inflorescences, including all indeterminate branches and spikelet pairs (Figures 6A to 6C), but not in floral meristems. *ra2* is similarly expressed in the anlagen of primary branch meristems and spikelet meristems of rice inflorescences (Figures 6D and 6E), while in barley, *ra2* is expressed only in the spikelet meristem anlagen on the main axis of the inflorescence (Figure 6F). These results demonstrate that both the sequence and expression pattern of *ra2* are conserved and suggest an important role for *ra2* in all grasses.
Figure 3. Cloning and Characterization of ra2.

(A) The genetic map of a portion of maize chromosome 3 (top) is compared with the syntenous physical region of rice chromosome 1 (bottom). Black circles are maize markers/genes. White circles are rice genes and ORFs. The 175-kb segment indicated for the rice physical map corresponds to rice clone AP003339. The rice homolog to maize RFLP marker asg48 is located in an unlinked location of rice chromosome 1, and it is the only nonsyntenic gene of the region shown here between maize and rice. There are four ORFs (white squares) in a 17-kb region between the Osmyb and Osra2 genes for *ramosa2 Regulates Branch Determinacy*.
expressed in this allele but not the other ra2 alleles. (B) Structure of ra2 with the LOB domain in gray; diagram begins and ends at transcription initiation and polyadenylation site, respectively. The alleles of ra2 are shown with the ra2-dm deletion indicated by the zigzag marks in intron 1 and exon 2. eb3, the fragment used as a probe for DNA and RNA gel blot hybridizations; ra2-full, the probe used in situ hybridization.

ra2 Mutants in Maize Affect the Determinacy of Branches

Processes that regulate axillary meristem formation are beginning to be understood thanks to a number of mutants that either fail to make branches or make too many. Mutants of the tomato lateral suppressor (ls) gene fail to produce vegetative branches, and their inflorescences have fewer flowers (Schumacher et al., 1999). las, the Arabidopsis ortholog of ls, is required for normal development of axillary meristems during the vegetative phase but does not play as significant a role in the inflorescence (Greb et al., 2003). The function of ls seems to be conserved in monocots because mutations in the rice ortholog, monoculm1, significantly decrease tiller production (Li et al., 2003). The bHLH protein encoded by ba1 in maize is required for all axillary branches, including ear and basal vegetative branches (Gallavotti et al., 2004). A related protein, LAX, shares a similar function in rice (Komatsu et al., 2003). No obvious orthologs are found in Arabidopsis, rice (Komatsu et al., 2003), and barley (Liu et al., 2005), all of which are deficient in production of lateral organs, and auxin-resistant1, which has increased shoot branching (reviewed in McSteen and 1995; Song et al., 2002; Klein et al., 2003). We were fortunate to find ra2 using a relatively small mapping population (1069) thanks to the synteny in the ra2 region, a large number of alleles, and the presence of a ra2 ortholog in rice. One of our closest flanking markers, however, was not located in this region in rice. As sequencing of the maize genome progresses, the ability to quickly identify the boundaries of syntenic regions should facilitate more rapid progress in positional cloning.

ra2 encodes a protein with a LOB domain, named after the enhancer trap pattern of the first gene isolated in this family (Shuai et al., 2002). ra2 has highest sequence similarity to LOB/ASL4 and is most likely its ortholog, based on results from a phylogenetic analysis that included all Arabidopsis LOB domain genes (see Supplemental Figure 1 online). Forty-two members of this plant-specific family are found in Arabidopsis. The rice genome contains 20 genes with 40% or more conserved amino acids in the LOB domain when compared with ASL4. Our searches have identified 12 unique genes in maize; however, maize has not yet been fully sequenced. ASL4 loss of function mutants in Arabidopsis show no phenotype (Shuai et al., 2002), and ASL4 expression, at the boundary of lateral organs long after the organs have been initiated, differs from ra2. Recent reports show that some LOB genes are important in root morphogenesis in Arabidopsis (Okushima et al., 2005) and rice (Inukai et al., 2005; Liu et al., 2005). Ectopic expression of certain LOB genes causes repression of knotted1-like (knox) genes, whose products promote stem cell proliferation (Lin et al., 2003; Chalfun-Junior et al., 2005). The opposite effect, increased expression of knox genes, has been reported in the LOB gene mutant asymmetric leaves2 (Ori et al., 2000; Semiarti et al., 2001). Our RNA gel blots and in situ hybridization, however, showed no difference in the levels of knotted1 transcript or expression pattern between wild-type and ra2 mutant inflorescences, nor did we find differences in the expression of other knox genes (gn1, rs1, and lg9) when measured by RT-PCR (see Supplemental Figure 2 online).

LOB domain proteins of Arabidopsis and rice localize to the nucleus and are thus thought to function in transcriptional control (Iwakawa et al., 2002; Liu et al., 2005). The LOB domain contains a putative nuclear localization signal. The ra2-mum4 allele introduces an Arg-to-His amino acid change in the nuclear localization signal in support of the notion that RA2 plays a role in the nucleus. In addition to the LOB domain that is conserved across plants, the grass species share a second C-terminal domain. Experiments in yeast indicate that the LOB domain of ARL1, a rice gene required for adventitious root formation, may function as a transcriptional repressor (Liu et al., 2005), whereas the C-terminal portion may act as an activator. Our ra2-dm allele contains a deletion that eliminates the LOB domain but can presumably make an in-frame protein consisting of the last 59 amino acids in the C terminus. This allele has a severe phenotype but may retain some of its function as discussed later.

Figure 3. (continued).

which there are no significantly similar maize sequences. The number and order of rice genes follow their annotation in GenBank but are not drawn to proportion. HP, hypothetical protein. (B) Structure of ra2 with the LOB domain in gray; diagram begins and ends at transcription initiation and polyadenylation site, respectively. The alleles of ra2 are shown with the ra2-dm deletion indicated by the zigzag marks in intron 1 and exon 2. eb3, the fragment used as a probe for DNA and RNA gel blot hybridizations; ra2-full, the probe used in situ hybridization. (C) Alignment of the deduced full-length amino acid sequence of ra2 from maize, sorghum (Sbra2), rice (Osra2), barley (Hvra2), and ASL4 of Arabidopsis. The LOB domain is located near the N terminus and consists of a C-rich domain, a GAS block, and a Leu-zipper domain. Grass ra2 orthologs share a conserved C terminus domain of unknown function. The asterisk indicates the mutation (Arg to His) in the ra2-mum4 allele.
PIN proteins are transporter-like membrane proteins that are thought to function in polar auxin transport (Gälweiler et al., 1998). Localization of PIN1 protein within the cell appears to be an early indicator of lateral organ initiation (Galweiler et al., 1998). Localization of PIN, while low levels lead to the basal localization, as high levels of PID activity lead to the apical localization, as in the ra2 mutants (Reinhardt et al., 2003). PID1 is thought to be important in this role. Many mutants with increased branching occur because of increased bud outgrowth, as in max, dad, and ramosus mutants in Arabidopsis, petunia (Petunia hybrida), and pea (Pisum sativum), respectively (McSteen and Leyser, 2005). Increased bud outgrowth occurs through a novel signaling molecule identified by analysis of the MAX genes (Booker et al., 2005). The phenotype is similar to the teosinte branched1 mutant in maize (Doebley et al., 1997), which is encoded by a bHLH protein. tb1 mutants have more branches arising from vegetative nodes and make secondary and tertiary branches (Hubbard et al., 2002). TB1 functions not only to repress axillary bud initiation but also axillary branch length.

Branching of the maize ra mutants differs in that branches with limited growth potential are transformed into indeterminate branches. In this regard, they are more similar to florigcaula and leafy mutants of Antirrhinum and Arabidopsis, respectively, which change the determinate floral meristem into an inflorescence-like meristem (Coen et al., 1990; Weigel et al., 1992). In ra2 mutants, short branches that normally make spikelet pairs are converted into longer branches that make multiple spikelets. Long branches at the base of the tassel also have increased secondary branching. In the ear, the initiation of more than two spikelet meristems per row causes disorganization of the rows, and in ra2-R and ra2-dm, some of the spikelet meristems acquire an indeterminate fate and become long branches. Thus, the mutant phenotype indicates that one function of ra2 is to restrict branch growth and to establish determinacy on the spikelet pair meristems. In addition to a change in branch determinacy, ra2 mutant tassels also have upright branches. These two features, branch angle and branch length, may be coordinately regulated. For example, the brevipedicellus mutation of Arabidopsis results in downward, shorter pedicels compared with the upright, long pedicels of the wild type (Douglas et al., 2002; Smith and Hake, 2003).

ra2 Predicts the Position of Branch Anlagen in the Inflorescence

Maize inflorescences offer an ideal system to follow the ontogeny of auxillary meristem formation. The developmental series seen in tassel or ear primordia provides a view of multiple stages of auxillary meristem initiation and growth. Scanning electron microscopy shows that the first sign of auxillary growth is the presence of a bract, a modified leaf. Spikelet pair meristems form in axils of bracts. ra2 expression is first seen prior to any visible bump on the surface of the inflorescence, suggesting that it may mark the site of both bract and spikelet pair meristem initiation. As the bract grows out, but before the axillary meristem develops, ra2 expression is restricted to a group of cells in the axil of the meristem (Coen et al., 1990; Weigel et al., 1992). In ra2 mutants, short branches that normally make spikelet pairs are converted into longer branches that make multiple spikelets. Long branches at the base of the tassel also have increased secondary branching. In the ear, the initiation of more than two spikelet meristems per row causes disorganization of the rows, and in ra2-R and ra2-dm, some of the spikelet meristems acquire an indeterminate fate and become long branches. Thus, the mutant phenotype indicates that one function of ra2 is to restrict branch growth and to establish determinacy on the spikelet pair meristems. In addition to a change in branch determinacy, ra2 mutant tassels also have upright branches. These two features, branch angle and branch length, may be coordinately regulated. For example, the brevipedicellus mutation of Arabidopsis results in downward, shorter pedicels compared with the upright, long pedicels of the wild type (Douglas et al., 2002; Smith and Hake, 2003).

ra2 Predicts the Position of Branch Anlagen in the Inflorescence

Maize inflorescences offer an ideal system to follow the ontogeny of auxillary meristem formation. The developmental series seen in tassel or ear primordia provides a view of multiple stages of auxillary meristem initiation and growth. Scanning electron microscopy shows that the first sign of auxillary growth is the presence of a bract, a modified leaf. Spikelet pair meristems form in axils of bracts. ra2 expression is first seen prior to any visible bump on the surface of the inflorescence, suggesting that it may mark the site of both bract and spikelet pair meristem initiation. As the bract grows out, but before the axillary meristem develops, ra2 expression is restricted to a group of cells in the axil of the meristem (Coen et al., 1990; Weigel et al., 1992). In ra2 mutants, short branches that normally make spikelet pairs are converted into longer branches that make multiple spikelets. Long branches at the base of the tassel also have increased secondary branching. In the ear, the initiation of more than two spikelet meristems per row causes disorganization of the rows, and in ra2-R and ra2-dm, some of the spikelet meristems acquire an indeterminate fate and become long branches. Thus, the mutant phenotype indicates that one function of ra2 is to restrict branch growth and to establish determinacy on the spikelet pair meristems. In addition to a change in branch determinacy, ra2 mutant tassels also have upright branches. These two features, branch angle and branch length, may be coordinately regulated. For example, the brevipedicellus mutation of Arabidopsis results in downward, shorter pedicels compared with the upright, long pedicels of the wild type (Douglas et al., 2002; Smith and Hake, 2003).

ra2 Predicts the Position of Branch Anlagen in the Inflorescence

Maize inflorescences offer an ideal system to follow the ontogeny of auxillary meristem formation. The developmental series seen in tassel or ear primordia provides a view of multiple stages of auxillary meristem initiation and growth. Scanning electron microscopy shows that the first sign of auxillary growth is the presence of a bract, a modified leaf. Spikelet pair meristems form in axils of bracts. ra2 expression is first seen prior to any visible bump on the surface of the inflorescence, suggesting that it may mark the site of both bract and spikelet pair meristem initiation. As the bract grows out, but before the axillary meristem develops, ra2 expression is restricted to a group of cells in the axil of the meristem (Coen et al., 1990; Weigel et al., 1992). In ra2 mutants, short branches that normally make spikelet pairs are converted into longer branches that make multiple spikelets. Long branches at the base of the tassel also have increased secondary branching. In the ear, the initiation of more than two spikelet meristems per row causes disorganization of the rows, and in ra2-R and ra2-dm, some of the spikelet meristems acquire an indeterminate fate and become long branches. Thus, the mutant phenotype indicates that one function of ra2 is to restrict branch growth and to establish determinacy on the spikelet pair meristems. In addition to a change in branch determinacy, ra2 mutant tassels also have upright branches. These two features, branch angle and branch length, may be coordinately regulated. For example, the brevipedicellus mutation of Arabidopsis results in downward, shorter pedicels compared with the upright, long pedicels of the wild type (Douglas et al., 2002; Smith and Hake, 2003).
the bract in maize (Figure 5H) and barley (Figure 6F). Thus, ra2 may initially define both bract and axillary meristem anlagen, but as the bract grows, it becomes restricted to just the cells that are destined to be the axillary meristem.

The ra2 expression pattern is highly conserved among grasses with widely different inflorescence architecture (i.e., maize, sorghum, barley, and rice). These cereals represent monophyletic groups that account for most of the species of Poaceae (Grass Phylogeny Working Group, 2001), suggesting that ra2 plays a similar role in inflorescence development of all grasses. This hypothesis is supported by the finding that ra2 maps to a quantitative trait locus for branch number in sorghum, a closely related species to maize with a more branched inflorescence (P. Brown and S. Kresovich, personal communication). Thus, we predict that a loss of function in rice should cause increased branch growth or indeterminacy. Availability of the ra2 gene sequence will enable quantitative trait loci analyses in other cereals and association analysis in maize to collectively better define the role of ra2 in quantitative variation in the inflorescence (Thornsberry et al., 2001).

Regulation of ra1 by ra2

Considering the expression patterns of ra1 and ra2, we propose a model to explain how these genes function to regulate branch architecture in cereal species. ra1 is likely to be downstream of ra2 based on maize data, including a reduction of ra1 expression in a ra2 mutant and timing of expression. ra2 appears to be independent of ra3 based on our in situ results. ra2 is expressed in the anlagen of the bract and meristem early in inflorescence development, while ra1 is expressed at a later stage at the base of emerging spikelet pair meristems. The expression patterns of ra1 and ra2 overlap briefly and then ra2 expression disappears in the zone where ra1 is expressed. Maize tassels have both determinate (spikelet pair) and indeterminate branches. Although ra2 is transiently expressed in indeterminate branch anlagen, ra1 is not (Vollbrecht et al., 2005). This result suggests that other factors required for normal expression of ra1, besides ra2, are missing in these first formed branch anlagen. The inability to promote ra1 expression in these branch anlagen likely explains their indeterminacy. Interestingly, ra1 is not found in rice, where spikelets form in multimers on indeterminate branches. These results suggest that in maize and sorghum, ra2 promotes spikelet pair meristem fate through its regulation of ra1. In grasses where ra1 is not present, spikelet pair meristems do not form. These grasses still form spikelets and have defined patterns of determinate and indeterminate branches. We hypothesize that ra2 imposes determinacy in these species through other targets.

Although our data suggest that ra1 is downstream of ra2, it is clear there are additional targets for ra2. ra2 mutant tassel branches are upright, which is not a feature of ra1 mutants. The ra1 ra2 double mutants have a synergistic phenotype with increased branching (Vollbrecht et al., 2005), suggesting that both proteins are likely to interact with additional components. Finally, ra1 is still expressed in the ra2-dm allele, which has a severe phenotype, ra2-dm has an in-frame deletion of the LOB domain, leaving the grass-specific conserved C-terminal domain. These results suggest that the domain is sufficient for ra1 expression, but not sufficient for full RA2 activity. Further experiments will determine the exact nature of their interactions.

Conclusion

The final shape of a ra2 mutant tassel is reminiscent of a typical raceme, which has branches that get progressively shorter toward the apex (Weberling, 1989), a pattern established through apical dominance. ra2 reinforces apical dominance by abruptly imposing a determinate fate on lateral organs, causing the switch from long branches to spikelet pairs. In maize, and likely in related grasses like sorghum, this function is performed, at least in part, by ra1. The conserved expression pattern and sequence of ra2 in maize, sorghum, barley, and rice suggest that it plays an important role in the organization of axillary meristems in all cereals. However, its downstream targets or the timing of activation may be different across grass species, resulting in varying degrees of branch growth that produce a wide array of inflorescence morphologies.

METHODS

Phenotype

To characterize inflorescence architecture of inbred lines and introgressed alleles, the ratio of each type of tassel branch borne on the main axis of the inflorescence was calculated. The number of main branches, branches with more than two single spikelets (spikelet multimers), branches with both single spikelets and spikelet pairs (mixed branches), and spikelet pairs along the main inflorescence axis was counted. The number of each type of branch was divided by the total to obtain the ratio. The tassel height, angle of the first two branches, and the length of the pedicels subtending the first five spikelet pairs were also measured.

Marker Development and Recombinant Screen

Markers umc1030, an SSR marker proximal to ra2, and PCR_mmp186 were used to screen for recombinants among 1069 seedlings of backcrossed progenies (A188/ra2-R x ra2-dm/ra2-dm). DNA minipreps were prepared from discs of leaf tissue from 2-week-old seedlings cut into Eppendorf tubes and extracted as described (Konieczny and Ausubel, 1993) except that samples were not frozen with liquid nitrogen. Recombinant seedlings were allowed to grow to score the phenotype of tassel and ear.

The initial mapping stage was done using markers listed in the IBM neighbors map. In order to find more closely linked markers to ra2, BLAST searches in various maize (Zea mays) EST and GSS databases (http://maizegdb.org, http://magi.plantgenome.iastate.edu, and http://maize.tigr.org) were performed with rice (Oryza sativa) genes that were linked to the rice mmp186 homolog as queries. Maize genes that showed high similarity to the rice queries were sequenced to search for polymorphisms among the alleles involved in our mapping populations. Cleaved-amplified polymorphisms or single nucleotide polymorphisms were used. Some PCR products were used as RFLP probes.

Physical Maps

The online FPC maps available at the Arizona Genomics Institute (http://www.genome.arizona.edu/) website were used to find an asg48 BAC contig. To obtain BACs for the distal region to ra2, the Clemson University
Sequences of Alleles and ra2 Characterization

The ra2 ORF of the introgressed lines B73, A188, W22, and Mo17 as well as the alleles ra2-R and ra2-mum4 were PCR amplified and sequenced with primers full_Zm_LOB_F (5'-GCTGCGGCTC-3') and full_Zm_LOB_R (5'-CTCCCTTCTTACTGCCAGTCC-3'). To identify the site of Mut insertions in alleles ra2-mum1 and ra2-mum2, a Mu out primer (5'-AGAGAAGCCCAAGCCWGCCTCTGCTTCG-3') in combination with 5' Zm_LOB_F (5'-CCCTCCCCCTTCTATGTCCAGT3') and 5' Zm_LOB_R (5'-TGGCGAAGTCCTCTCGGTC-3') or 5' insitu_R (5'-TGGCGAAGTCTCTCGGTC-3') was used. The full_dm allele was amplified and sequenced with primers 5' Zm_LOB_F and full_dm Zm_LOB_R.

To obtain a full genomic sequence, a ra2-containing BAC (b0097N14) was restricted with EcoRI, and DNA gel blot hybridization with the ea3 probe was performed. The hybridizing band was gel extracted, purified with a QiAquick column (Qiagen), and cloned into an pBluescript SK (Stratagene) plasmid for sequencing.

The ra2 transcript ends were amplified and sequenced using a tassel cDNA library. PCR fragments were generated with T7 and the internal primer EB3_R (5'-CGTGGTCGTCAGTCCCTCGG-3') to obtain the 3' end. Primer pAD GAL4 (5'-AAAAGAGATGATGATGATGATGATGCTCC-3') and the internal primer 5' end (5'-CAAATGAAATGAAAGGGGAGGGG-3') were used for the 5' end. All PCR products were cloned into a pGEM-T Easy (Promega) vector for sequencing.

Gene Expression

RNA from inflorescences measuring between 0.5 and 1 cm was extracted using the Trizol (Invitrogen) method, and poly(A)⁺ was prepared using Dynabeads (Dynal Biotech). Approximately 4 µg of poly(A)⁺ was loaded in each lane of a formaldehyde denaturing gel, and the blotted membrane was hybridized with the ea3 probe. The same membrane was stripped and hybridized with a rat probe. As a control to estimate the relative amount of RNA in the lanes, the membrane was reprobed with a EcoRI-linearized plasmid (Stratagene) for sequencing.

Scanning Electron Microscopy

Maize tissue for scanning electron microscopy was fixed in FAA (50% ethanol, 5% acetic acid, 3.7% formaldehyde, and 0.5% Triton) for 1 h at 4°C and dehydrated in an ethanol series to 100% ethanol. The samples were critical point dried, sputter coated with gold palladium for 45 s, and viewed on a Hitachi S-4700 scanning electron microscope at an accelerating voltage of 5 kV.

Genomics Institute (CUGI) B73 BAC library was screened with the RFLP probe mmp186 and the ea3 probe (Figure 3B). BACs were obtained from CUGI, and their correspondence to markers was confirmed by PCR and DNA gel blot hybridization.

In Situ Hybridizations

The protocol of Jackson (1992) was used with the following modifications. Immature inflorescences were fixed in FAA for 1 h. To make ra2 mRNA probes, fragments were amplified from a tassel library and the PCR products were cloned into the pGEM-T Easy plasmid. Probes for barley (Hordeum vulgare), sorghum (Sorghum bicolor), and rice in situ hybridization were amplified using cDNA from immature inflorescences as template and consisted of the entire ORF. Plasmids with the appropriate orientation were linearized, and an RNA probe was synthesized using a DIG RNA labeling mix (Roche Diagnostics). Hybridization and incubations with antibody and detection solution were done by placing two slides together, face to face, with 200 µL of the corresponding solution. Hybridization was performed overnight at 55°C, and the slides were then washed twice in 0.2 × SSC for 30 min each at 55°C and twice in 0.5 M NaCl, 10 mM Tris, and 1 mM EDTA for 5 min at 37°C and RNase treated for 20 min at 37°C. Detection was performed by incubating the slides for 1 h with Anti-DIG antibody (Roche Diagnostics) diluted 1/500 in antibody dilution buffer. The following conjugates were used: alkaline phosphatase for barley (Hordeum vulgare), horseradish peroxidase (HRP) for sorghum (Sorghum bicolor), and fluorescent-dye conjugated anti–DIG antibody for rice (Oryza sativa). The following materials are available in the online version of this article.

Accession Numbers

Sequence data from this article can be found in the GenBank/EMBL data libraries under accession numbers DQ327701 (maize), DQ327702 (barley), and DQ327703 (sorghum).

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure 1. Phylogeny of LOB Genes.

Supplemental Figure 2. Expression of knox Genes in ra2 Mutant Inflorescences.

ACKNOWLEDGMENTS

This work was supported by funding from the National Science Foundation (DBI-0110189) to S.H., R.M., and T.R. and by the
USDA-Agricultural Research Service to S.H. E.B. was supported by National Science Foundation Grant DBI-0310210. We thank Paula McSteen for discovering the ra2-mum4 allele, Don McCarty and the UniformMu National Science Foundation project for allowing us to screen their Mu lines, Tracy Yamawaki for the initial ra2 mapping, Delilah Wood for use of the scanning electron microscopy facility, Devin O’Connor for help with ra1 in situ analysis, and Jennifer Fletcher for reviewing the manuscript.

Received October 26, 2005; revised December 5, 2005; accepted December 15, 2005; published January 6, 2006.

REFERENCES

ramosa2 Encodes a LATERAL ORGAN BOUNDARY Domain Protein That Determines the Fate of Stem Cells in Branch Meristems of Maize

Esteban Bortiri, George Chuck, Erik Vollbrecht, Torbert Rocheford, Rob Martienssen and Sarah Hake

Plant Cell 2006;18;574-585; originally published online January 6, 2006; DOI 10.1105/tpc.105.039032

This information is current as of July 1, 2017

Supplemental Data /content/suppl/2006/01/06/tpc.105.039032.DC1.html

References This article cites 47 articles, 23 of which can be accessed free at: /content/18/3/574.full.html#ref-list-1

eTOCs Sign up for eTOCs at: http://www.plantcell.org/cgi/alerts/ctmain

CiteTrack Alerts Sign up for CiteTrack Alerts at: http://www.plantcell.org/cgi/alerts/ctmain

Subscription Information Subscription Information for *The Plant Cell* and *Plant Physiology* is available at: http://www.aspb.org/publications/subscriptions.cfm

© American Society of Plant Biologists
ADVANCING THE SCIENCE OF PLANT BIOLOGY