ON THE COVER

The *Rosea*1, *Rosea*2, and *Venosa* genes encode MYB-related transcription factors active in the flowers of *Antirrhinum majus*. Schwinn et al. (pages 831–851) show that these genes control the intensity and pattern of anthocyanin pigmentation in flowers. Despite the structural similarity of these proteins, they influence the expression of target genes encoding the enzymes of anthocyanin biosynthesis with different specificities. Different *Antirrhinum* species show striking differences in their patterns and intensities of floral pigmentation due to variations in the activity of the *Rosea* and *Venosa* loci. The resulting patterns of pigmentation may provide visual guides for bees, attracting them to enter and pollinate the closed flowers. Cover photograph by Vernon Clarke shows the floral phenotype of the *Venosa*+ allele of *A. majus*.

IN THIS ISSUE

Genetic and Epigenetic Regulation of Embryogenesis 781
Nancy A. Eckardt

IN BRIEF

Energy Dissipation: New Role for a Carotenoid Protein in Cyanobacteria 785
Interorganellar Communication: Protein Synthesis in Organelles Influences Nuclear Photosynthetic Gene Expression
Nancy A. Eckardt

CURRENT PERSPECTIVE ESSAY

Studies of Abscisic Acid Perception Finally Flower 786
Ruth R. Finkelstein

HISTORICAL PERSPECTIVE ESSAY

Plant Circadian Rhythms 792
C. Robertson McClung

RESEARCH ARTICLES

DNA Methylation Is Critical for *Arabidopsis* Embryogenesis and Seed Viability 805
Wenyan Xiao, Kendra D. Custard, Roy C. Brown, Betty E. Lemmon, John J. Harada, Robert B. Goldberg, and Robert L. Fischer

*Arabidopsis* GLUTAMINE-RICH PROTEIN23 Is Essential for Early Embryogenesis and Encodes a Novel Nuclear PPR Motif Protein That Interacts with RNA Polymerase II Subunit III
Yong-He Ding, Nai-You Liu, Zuo-Shun Tang, Jie Liu, and Wei-Cai Yang

A Small Family of MYB-Regulatory Genes Controls Floral Pigmentation Intensity and Patterning in the Genus *Antirrhinum*
Kathy Schwinn, Julien Venail, Yongjin Shang, Steve Mackay, Vibeka Alm, Eugenio Butelli, Ryan Oyama, Paul Bailey, Kevin Davies, and Cathie Martin

The *TORNADO*1 and *TORNADO*2 Genes Function in Several Patterning Processes during Early Leaf Development in *Arabidopsis thaliana*
Gerda Cnops, Pia Neyt, Jeroen Raes, Marica Petrarulo, Hilde Nelissen, Nenad Malenica, Christian Luschnig, Olaf Tietz, Franck Ditengou, Klaus Palme, Abdelkrim Azmi, Els Prinsen, and Mieke Van Lijsebettens

Calcium-Dependent Protein Kinase Isoforms in *Petunia* Have Distinct Functions in Pollen Tube Growth, Including Regulating Polarity
Gyeong Mee Yoon, Peter E. Dowd, Simon Gilroy, and Andrew G. McCubbin

*Arabidopsis* TEBICHI, with Helicase and DNA Polymerase Domains, Is Required for Regulated Cell Division and Differentiation in Meristems
Soichi Inagaki, Takamasa Suzuki, Masa-aki Ohto, Hiroko Urawa, Takashi Horiuchi, Kenzo Nakamura, and Atsushi Morikami
The D-Type Cyclin CYCD3;1 Is Limiting for the G1-to-S-Phase Transition in Arabidopsis

Margit Menges, Anne K. Samland, Séverine Planchais, and James A.H. Murray

907

The Structure of Rauvolfia serpentina Strictosidine Synthase Is a Novel Six-Bladed β-Propeller Fold in Plant Proteins

Xueyan Ma, Santosh Panjikar, Juergen Koepke, Elke Loris, and Joachim Stöckigt

Arabidopsis SHORT HYPOCOTYL UNDER BLUE1 Contains SPX and EKS Domains and Acts in Cryptochrome Signaling

Xiaojun Kang and Min Ni

921

Selective Mobility and Sensitivity to SNAREs Is Exhibited by the Arabidopsis KAT1 K+ Channel at the Plasma Membrane

Jens-Uwe Sutter, Frisca Campanoni, Matthew Tyrrell, and Michael R. Blatt

935

LOW PSI ACCUMULATION1 Is Involved in Efficient Assembly of Photosystem II in Arabidopsis thaliana

Lianwei Peng, Jinjiang Ma, Wei Chi, Jinkui Guo, Shuyong Zhu, Qingtuo Lu, Congming Lu, and Lixin Zhang

955

Nuclear Photosynthetic Gene Expression Is Synergistically Modulated by Rates of Protein Synthesis in Chloroplasts and Mitochondria

Paolo Pesaresi, Simona Masiero, Holger Eubel, Hans-Peter Braun, Shashi Bhushan, Elizbieta Glaser, Francesco Salamini, and Dario Leister

970

A Soluble Carotenoid Protein Involved in Phycobilisome-Related Energy Dissipation in Cyanobacteria

Adélée Wilson, Ghada Aljain, Jérémie Verbavatz, Enrico Gobbato, Pawel Bednarek, Svenja Debey, Joachim L. Schultze, Jacqueline Bautzer, and Jane E. Parker

992

Cytochrome P450 CYP710A Encodes the Sterol C22 Desaturase in Arabidopsis and Tomato

Tomomi Morikawa, Masaharu Mizutani, Nozomu Aoki, Bunta Watanabe, Hirohisa Saga, Shigeki Saito, Akira Okawa, Hideyuki Suzuki, Nozomu Sakurai, Daisuke Shibata, Akira Wadano, Kanzo Sakata, and Daisaku Ohta

1008

FaQR, Required for the Biosynthesis of the Strawberry Flavor Compound 4-Hydroxy-2,5-Dimethyl-3(2H)-Furanone, Encodes an Enone Oxidoreductase

Thomas Raab, Juan Antonio Lópeza-Ráez, Dorothée Klein, José Luis Caballero, Enriqueta Moyano, Wilfried Schwan, and Juan Muñoz-Blanco

1023

Salicylic Acid–Independent ENHANCED DISEASE SUSCEPTIBILITY1 Signaling in Arabidopsis Immunity and Cell Death Is Regulated by the Monoxygenase FMO1 and the Nudix Hydrolase NUDT7

Michael Bartsch, Enrico Gobbato, Pawel Bednarek, Svenja Debey, Joachim L. Schultze, Jacqueline Bautzer, and Jane E. Parker

1038

Reactive Oxygen Species Play a Role in Regulating a Fungus–Perennial Ryegrass Mutualistic Interaction

Aiko Tanaka, Michael J. Christensen, Daigo Takemoto, Pyoyn Park, and Barry Scott

1052

The U-Box Protein CMPG1 Is Required for Efficient Activation of Defense Mechanisms Triggered by Multiple Resistance Genes in Tobacco and Tomato

Rocio González-Lamothe, Dimitrios I. Tsitsigiannis, Andrea A. Ludwig, Mireia Panicot, Ken Shirasu, and Jonathan D.G. Jones

1067

The E3 Ubiquitin Ligase Activity of Arabidopsis PLANT U-BOX17 and Its Functional Tobacco Homolog ACRE276 Are Required for Cell Death and Defense


1084

Online version contains Web-only data.

Open Access articles can be viewed online without a subscription.