ON THE COVER

The *Rosea1, Rosea2*, and *Venosa* genes encode MYB-related transcription factors active in the flowers of *Antirrhinum majus*. Schwinn et al. (pages 831–851) show that these genes control the intensity and pattern of anthocyanin pigmentation in flowers. Despite the structural similarity of these proteins, they influence the expression of target genes encoding the enzymes of anthocyanin biosynthesis with different specificities. Different *Antirrhinum* species show striking differences in their patterns and intensities of floral pigmentation due to variations in the activity of the *Rosea* and *Venosa* loci. The resulting patterns of pigmentation may provide visual guides for bees, attracting them to enter and pollinate the closed flowers. Cover photograph by Vernon Clarke shows the floral phenotype of the *Venosa* + allele of *A. majus*.
The D-Type Cyclin CYCD3;1 is Limiting for the G1-to-S-Phase Transition in Arabidopsis
Margit Menges, Anne K. Samland, Séverine Planchais, and James A.H. Murray

The Structure of Rauvolfia serpentina Stricosidine Synthase Is a Novel Six-Bladed β-Propeller Fold in Plant Proteins
Xueyan Ma, Santosh Panjikar, Juergen Koeppke, Elke Loris, and Joachim Stöckigt

Arabidopsis SHORT HYPOCOTYL UNDER BLUE1 Contains SPX and EKS Domains and Acts in Cryptochrome Signaling
Xiaojun Kang and Min Ni

Selective Mobility and Sensitivity to SNAREs is Exhibited by the Arabidopsis KAT1 K+ Channel at the Plasma Membrane
Jens-Uwe Sutter, Frisca Campanioni, Matthew Tyrrell, and Michael R. Blatt

LOW PSII ACCUMULATION1 Is Involved in Efficient Assembly of Photosystem II in Arabidopsis thaliana
Lianwei Peng, Jinfang Ma, Wei Chi, Jinkui Guo, Shuyong Zhu, Qingtao Lu, Congming Lu, and Lixin Zhang

Nuclear Photosynthetic Gene Expression Is Synergistically Modulated by Rates of Protein Synthesis in Chloroplasts and Mitochondria
Paolo Pesaresi, Simona Masiero, Holger Eubel, Hans-Peter Braun, Shashi Bhushan, Elzbieta Glaser, Francesco Salamini, and Dario Leister

A Soluble Carotenoïd Protein Involved in Phyccobilisome-Related Energy Dissipation in Cyanobacteria
Adcjé Wilson, Ghada Ajallian, Jean-Marc Verbavatz, Imre Vass, Cherny A. Kerfel, and Dina Kirilovsky

Cytochrome P450 CYP710A Encodes the Sterol C22 Desaturase in Arabidopsis and Tomato
Tomomi Morikawa, Masaharu Mizutani, Nozomu Aoki, Bunta Watanabe, Hirohisa Saga, Shigeki Saito, Akira Okawa, Hideyuki Suzuki, Nozomu Sakurai, Dausuke Shibata, Akira Wadano, Kanzo Sakata, and Daisaku Ohta

FaQR, Required for the Biosynthesis of the Strawberry Flavor Compound 4-Hydroxy-2,5-Dimethyl-3(2H)-Furanone, Encodes an Enone Oxidoreductase
Thomas Raab, Juan Antonio López-Raiz, Dorothee Klein, Jose Luis Caballero, Enriqueta Moyano, Wilfried Schwab, and Juan Muñoz-Blanco

Salicylic Acid–Independent ENHANCED DISEASE SUSCEPTIBILITY1 Signaling in Arabidopsis Immunity and Cell Death Is Regulated by the Monooxygenase FMO1 and the Nudix Hydrolase NUDT7
Michael Bartsch, Enrico Gobbato, Pawel Bednarek, Svenja Debey, Joachim L. Schultze, Jaqueline Bautor, and Jane E. Parker

Reactive Oxygen Species Play a Role in Regulating a Fungus–Perennial Ryegrass Mutualistic Interaction
Aiko Tanaka, Michael J. Christensen, Daigo Takemoto, PyoYun Park, and Barry Scott

The U-Box Protein CMPG1 Is Required for Efficient Activation of Defense Mechanisms Triggered by Multiple Resistance Genes in Tobacco and Tomato
Rocio González-Lamothe, Dimitrios I. Tsitsigiannis, Andrea A. Ludwig, Mireia Panicot, Ken Shirasu, and Jonathan D.G. Jones

The E3 Ubiquitin Ligase Activity of Arabidopsis PLANT U-BOX17 and Its Functional Tobacco Homolog ACRE276 Are Required for Cell Death and Defense

Online version contains Web-only data.
Open Access articles can be viewed online without a subscription.