ON THE COVER

MicroRNAs (miRNAs) are endogenous 21- to 24-nucleotide molecules processed from a longer precursor foldback termed pre-miRNA. miRNAs that are completely or partially complementary to the miRNA are targeted for cleavage, leading to their destruction. Alvarez et al. (pages 1134–1151) and Schwab et al. (pages 1121–1133) show that the miRNA sequences of natural precursors can be altered to produce designer molecules targeting specific mRNAs. The cover illustrates the floral phenotype from the overexpression of two different pre-miRNAs (shown in the background) with novel, designed miRNAs (highlighted in red). To the left, a Nicotiana tabacum plant expressing a pre-miRNA designed to target several AUXIN RESPONSE FACTOR genes is shown. These genes promote abaxial identity in lateral organs, and their silencing led to an ectopic ring of corolla lobes arising abaxially from the floral tube. To the right, an inflorescence of an Arabidopsis plant in which several MADS box genes are targeted is shown. These genes control various aspects of organ and meristem identity, and their silencing produces a novel phenotype not seen in single mutants.

EDITORIAL

Plant Genomes
Rich Jorgensen

COMMENTARY

Comparative Sequencing of Plant Genomes: Choices to Make
Scott Jackson, Steve Rounsley, and Michael Purugganan

IN THIS ISSUE

A Wheel within a Wheel: Temperature Compensation of the Circadian Clock
Nancy A. Eckardt

IN BRIEF

Sugar Signaling between Plastids and the Plasma Membrane
Ancient Polyploidy in the Sister Families Brassicaceae and Cleomaceae
Nancy A. Eckardt

HISTORICAL PERSPECTIVE ESSAY

Phototropism: Bending towards Enlightenment
Craig W. Whippo and Roger P. Hangarter

RESEARCH ARTICLES

Highly Specific Gene Silencing by Artificial MicroRNAs in Arabidopsis
Rebecca Schwab, Stephan Ossowski, Markus Riester, Norman Warthmann, and Detlef Weigel

Endogenous and Synthetic MicroRNAs Stimulate Simultaneous, Efficient, and Localized Regulation of Multiple Targets in Diverse Species
John Paul Alvarez, Irena Pekker, Alexander Goldshmidt, Eyal Blum, Ziva Amsellem, and Yuval Eshed

Independent Ancient Polyploidy Events in the Sister Families Brassicaceae and Cleomaceae
M. Eric Schranz and Thomas Mitchell-Olds

Locus-Specific Control of DNA Methylation by the Arabidopsis SUVH5 Histone Methyltransferase
Michelle L. Ebbs and Judith Bender
The Molecular Basis of Temperature Compensation in the *Arabidopsis* Circadian Clock


1177

Dynamic and Compensatory Responses of *Arabidopsis* Shoot and Floral Meristems to CLV3 Signaling

Ralf Müller, Lorenzo Borghi, Dorota Kwiatkowska, Patrick Laufs, and Rüdiger Simon

1188

γ-Tubulin Is Essential for Acentrosomal Microtubule Nucleation and Coordination of Late Mitotic Events in *Arabidopsis*

Pavla Binarová, Věra Cenklová, Jitěna Procházková, Anna Doskočilová, Jindřich Volf, Martin Vrlik, and László Bögre

1199

*Arabidopsis* Separase AESP Is Essential for Embryo Development and the Release of Cohesin during Meiosis

Zhe Liu and Christopher A. Makaroff

1213

The Plastid Protein THYLAKOID FORMATION1 and the Plasma Membrane G-Protein GPA1 Interact in a Novel Sugar-Signaling Mechanism in *Arabidopsis*

Jirong Huang, J. Philip Taylor, Jin-Gui Chen, Joachim F. Uhrig, Danny J. Schnell, Tsuyoshi Nakagawa, Kenneth L. Korth, and Alan M. Jones

1226

Plant Retromer, Localized to the Prevacuolar Compartment and Microvesicles in *Arabidopsis*, May Interact with Vacuolar Sorting Receptors

Peter Oulivsson, Oliver Heinzler, Stefan Hillmer, Giselbert Hinz, Yu Chung Tse, Liven Jiang, and David G. Robinson

1239

Multiple Vacuolar Sorting Determinants Exist in Soybean 11S Globulin

Nobuyuki Maruyama, Leong Ching Mun, Miyuki Tatsuhara, Machiko Sawada, Masao Ishimoto, and Shigeru Utsumi

1253

PH4 of Petunia Is an R2R3 MYB Protein That Activates Vacuolar Acidification through Interactions with Basic-Helix-Loop-Helix Transcription Factors of the Anthocyanin Pathway

Francesca Quattrociocchi, Walter Verweij, Arthur Kroon, Cornelis Spelt, Joseph Mol, and Ronald Koes

1274

Functional Analysis of an *Arabidopsis* Transcription Factor, DREB2A, Involved in Drought-Responsive Gene Expression

Yoh Sakuma, Kyonoshin Maruyama, Yurioko Osakabe, Feng Qin, Motoaki Seki, Kazuo Shinozaki, and Kazuko Yamaguchi-Shinozaki

1292

Physical and Functional Interactions between Pathogen-Induced *Arabidopsis* WRKY18, WRKY40, and WRKY60 Transcription Factors

Xinpeng Xu, Chunhong Chen, Baofang Fan, and Zhixiang Chen

1310

Online version contains Web-only data.

Open Access articles can be viewed online without a subscription.