NUCLEOPORIN85 Is Required for Calcium Spiking, Fungal and Bacterial Symbioses, and Seed Production in *Lotus japonicus*

Katsuharu Saito,a,1 Makoto Yoshikawa,b,2 Koji Yano,b,2 Hiroki Miwa,c,3 Hisaki Uchida,d Erika Asamizu,e Shusei Sato,e Satoshi Tabata,e Haruko Imaizumi-Anraku,a,f Yosuke Umehara,a,f Hiroshi Kouchi,a,f Yoshikatsu Murooka,b Krzysztof Szczyglowski,g J. Allan Downie,c Martin Parniske,h Makoto Hayashi,a,b,2 and Masayoshi Kawaguchiia,d,4

In *Lotus japonicus*, seven genetic loci have been identified thus far as components of a common symbiosis (Sym) pathway shared by rhizobia and arbuscular mycorrhizal fungi. We characterized the *nup85* mutants (*nup85*-1, -2, and -3) required for both symbioses and cloned the corresponding gene. When inoculated with *Glomus intraradices*, the hyphae managed to enter between epidermal cells, but they were unable to penetrate the cortical cell layer. The *nup85*-2 mutation conferred a weak and temperature-sensitive symbiotic phenotype, which resulted in low arbuscule formation at 22°C but allowed significantly higher arbuscule formation in plant cortical cells at 18°C. On the other hand, the *nup85* mutants either did not form nodules or formed few nodules. When treated with Nod factor of *Mesorhizobium loti*, *nup85* roots showed a high degree of root hair branching but failed to induce calcium spiking. In seedlings grown under uninoculated conditions supplied with nitrate, *nup85* did not arrest plant growth but significantly reduced seed production. *NUP85* encodes a putative nucleoporin with extensive similarity to vertebrate NUP85. Together with symbiotic nucleoporin NUP133, *L. japonicus* *NUP85* might be part of a specific nuclear pore subcomplex that is crucial for fungal and rhizobial colonization and seed production.

INTRODUCTION

More than 80% of land plant families have symbiotic relationships with arbuscular mycorrhizal (AM) fungi belonging to the fungal class Glomeromycota. The AM fungi absorb minerals, including phosphate, from the soil via the extraradical hyphae and provide them to the plants, possibly via arbuscules formed in the cortical cells (Smith and Gianinazzi, 1988; Smith and Read, 1997; Harrison, 1999). The fossil record of the arbuscules indicates the origin of AM symbiosis in the early Devonian period ~400 million years ago (Remy et al., 1994; Taylor et al., 1995). The cytology of AM colonization of *Lotus japonicus* is well documented (Bonfante et al., 2000; Genre and Bonfante, 2002; Novero et al., 2002; Demchenko et al., 2004). First, AM fungi form appressoria along the longitudinal border between epidermal cells and grow between the two adjacent epidermal cells. During the second step, hyphae penetrate one of the two adjacent epidermal cells, traverse the underlying cortical cells, and grow between or within cortical cells. The third step is formation of arbuscules within inner cortical cells, where hyphae branch profusely.

The nitrogen-fixing symbiosis between legumes and rhizobia, unlike the AM symbiosis, involves host-specific recognition and postembryonic development of a nitrogen-fixing organ, the nodule. The rhizobial symbiosis is initiated by reciprocal signal exchange. (Iso)flavonoids secreted from the plant roots are recognized by rhizobial nodD proteins that induce the expression of a set of bacterial genes essential for nodulation. A subset of these genes encodes enzymes involved in the biosynthesis of lipo-chitin oligosaccharides (Nod factors), which act as determinants of host specificity and as morphogens (Dénaire et al., 1996). Nod factors released by rhizobia elicit early responses in root hairs, such as a calcium influx, membrane depolarization, alkalization, calcium spiking, rearrangement of actin filaments, and root hair deformation. The Nod factors also act on the cortical cells, induce

1 Current address: Faculty of Agriculture, Shinshu University, Nagano 399-4598, Japan.
2 Current address: Department of Biology, Genetics Institute, University of Munich, D-80638 Munich, Germany.
3 Current address: Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan.
4 To whom correspondence should be addressed. E-mail masayosi@biol.s.u-tokyo.ac.jp; fax 81-3-5841-4458.
5 The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: Masayoshi Kawaguchi (masayosi@biol.s.u-tokyo.ac.jp).
6 www.plantcell.org/cgi/doi/10.1105/tpc.106.046938
preinfection thread formation, and activate cortical cell division leading to differentiation of nodule tissues (Stougaard, 2000).

Despite marked differences between the fungal and bacterial symbioses, common genes required for both interactions were identified in pea (Pisum sativum) (Duc et al., 1989). This initial observation has now been extended to several legume species (Gianinazzi-Pearson, 1996), thus defining the so-called common symbiosis (Sym) pathway (Kistner and Parniske, 2002). Three genes, Does Not Make Infections I (DMI1), DMI2, and DMI3, from Medicago truncatula (Endre et al., 2002; Ané et al., 2004; Lévy et al., 2004; Mitra et al., 2004) and at least seven loci, SymRK, CASTOR, POLLUX, NUP133, CCaMK, Lj Sym6/30/82, and Lj Sym24/73/85, from L. japonicus have been defined thus far as elements of the common Sym pathway (Kistner et al., 2005; Sandal et al., 2006).

NORK/DMI2/SymRK/Ps SYM19 has been identified as encoding a receptor-like kinase with three Leu-rich repeats in the extracellular domain (Endre et al., 2002; Stracke et al., 2002). CASTOR and POLLUX/DMI1 encode proteins with broad similarity to the NAD binding TrkA domain of bacterial K+ channels (Ané et al., 2004; Imazumiz-Anraku et al., 2005). NUP133 encodes a protein that has sequence similarity to human nucleoporin Nup133 (Kanamori et al., 2006). These genes are required for calcium spiking that is induced in response to Nod factors. By contrast, a Ca2+/calmodulin-dependent protein kinase (CCaMK) acts downstream of the calcium spiking (Lévy et al., 2004; Mitra et al., 2004; Gleason et al., 2006; Tirchine et al., 2006). The identification of additional common Sym genes promises to shed further light on the nature of ancient plant functions involved in symbiotic signaling. Here, we describe a putative nucleoporin gene identified through positional cloning and the phenotypic consequences of mutations in this gene for symbiosis.

RESULTS

Allelism Tests

The Ljsym24 and Ljsym85 loci were previously shown to be required for both rhizobial and AM symbioses (Szczygowski et al., 1998; Kawaguchi et al., 2005; Kistner et al., 2005; Sandal et al., 2006). The Ljsym73 loci were reported as low nodulation mutants (Kawaguchi et al., 2002). Despite some phenotypic differences, these three mutants were mapped near the translocation site of the short arm of chromosome 1. We therefore performed allelism tests. When plants carrying Ljsym24, Ljsym73, and Ljsym85 were reciprocally crossed, none of the F1 progeny from crosses of Ljsym24 × Ljsym73 and Ljsym24 × Ljsym85 formed nodules (Table 1). In F1 plants of Ljsym73 × Ljsym85, 8 of 11 plants did not form nodules, and three plants had a phenotype like the Ljsym73 mutant, forming one or two large nodules per plant. The complementation tests showed that Ljsym24, Ljsym73, and Ljsym85 are allelic. Ljsym24, Ljsym73, and Ljsym85 are referred to hereafter as nup85-1, -2, and -3, respectively.

nup85 Mutants Are Defective in Root Nodule Symbiosis and Nod Factor–Induced Calcium Spiking

The three alleles of nup85 caused different levels of defects in nodulation. The nup85-1 and nup85-2 mutants formed no nodules or a low number of effective nodules, as described previously (Szczygowski et al., 1998; Kawaguchi et al., 2002; Kistner et al., 2005), whereas the nup85-3 mutant did not form nodules even 2 months after inoculation with Mesorhizobium loti. Hereafter, we used the nup85-2 and nup85-3 mutants as representatives of weak and strong phenotypic lines, respectively.

We examined root hair responses of the nup85 mutants to Nod factors. Root hairs of both nup85-2 and nup85-3 mutants responded to Nod factors in a similar manner (Figures 1D and 1F). Root hairs of both mutants exhibited a high degree of branching and appeared more stunted (Figures 1D and 1F) than those of the wild type (Figure 1B). Root hairs on seedlings without rhizobia or Nod factors were normal (Figures 1A, 1C, and 1E).

For β-galactosidase activity, roots were examined 5 d after infection with an M. loti strain carrying the lacZ reporter gene. In the wild type, an average of 27 infection threads per plant were observed. By contrast, the nup85-2 and nup85-3 mutants had a significant reduction in numbers of infection threads (Figure 1G).

Nod factors normally induce calcium spikes mostly around the nuclear region of legume root hairs (Ehrhardt et al., 1996; Cárdenas et al., 1999; Walker et al., 2000; Harris et al., 2003; Shaw and Long, 2003; Miwa et al., 2006). In root hairs of wild-type L. japonicus, calcium spiking initiated 10 to 30 min after Nod factor addition and persisted over the remainder of the experiment. We previously showed that the nup85-1 mutant was previously shown to have no calcium spiking in response to Nod factor application (Miwa et al., 2006).

AM Fungal Colonization Is Blocked at the Entry to the Outer Cortical Cells in nup85 Mutants

In the wild type, 9 weeks after inoculation with Glomus intraradices at 24°C, hyphal, arbuscular, and vesicular colonizations were 46.0% ± 1.2%, 46.0% ± 1.2%, and 14.8% ± 0.4%, respectively. Roots of nup85-3 were not colonized by the fungus, while in nup85-2, a very low level of mycorrhizal colonization (hyphal colonization, 0.4% ± 0.8%; arbuscular colonization, 0.2% ± 0.4%; and vesicular colonization, 0.0% ± 0.0%) was observed. The fungal colonization at low frequency in nup85-2

<table>
<thead>
<tr>
<th>Parent Lines</th>
<th>Numbers of F1 Plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female × Male</td>
<td>Nod8</td>
</tr>
<tr>
<td>Ljsym24 × Ljsym73</td>
<td>0</td>
</tr>
<tr>
<td>Ljsym73 × Ljsym85</td>
<td>1*</td>
</tr>
<tr>
<td>Ljsym73 × Ljsym85</td>
<td>0</td>
</tr>
<tr>
<td>Ljsym85 × Ljsym24</td>
<td>0</td>
</tr>
<tr>
<td>Ljsym85 × Ljsym24</td>
<td>0</td>
</tr>
<tr>
<td>Ljsym85 × Ljsym73</td>
<td>0</td>
</tr>
<tr>
<td>Ljsym85 × Ljsym73</td>
<td>2*</td>
</tr>
</tbody>
</table>

*The F1 plants formed only one or two nodules per plant.
can be due to fungal entry from meristematically arrested roots, as observed in symRK and sym15 (ccamk) mutants (Demchenko et al., 2004). Nevertheless, the apparent block in the interaction was identical for all three mutant lines. The fungus formed appressoria along the longitudinal axis at the surface of nup85 roots. Although hyphal colonization was occasionally blocked at the epidermal surface, frequent successful entry between epidermal cells was observed (Figure 2C). Nevertheless, the fungus was unable to penetrate the outer cortical cells (Figure 2B). Instead, the hyphae swelled at the epidermis/cortex interface and did not progress further inside the root (Figures 2B and 2D). By contrast, wild-type plants were normally infected by G. intraradices. The fungus crossed the epidermis of wild-type roots and traversed the outer cortical cells, and this was followed by hyphal extension in the intercellular space of the cortex and arbuscule formation in the inner cortical root cells (Figure 2A).

nup85 Plants Are Temperature-Sensitive Mutants for Symbioses

The symbiotic phenotypes in the roots of nup85 mutants seem to be affected by temperature. We observed the mycorrhization and nodulation of the nup85 mutants under precisely controlled temperatures of 22 ± 0.5°C or 18 ± 0.5°C. The nup85-2 mutant showing a weak symbiotic phenotype was highly colonized by the intraradical hyphae of G. intraradices at 22°C, whereas arbuscules in cortical cells were less frequently observed (Figure 3A). At 18°C, the nup85-2 mutant had significantly more arbuscules than at 22°C (Figures 3B and 3F). The nup85-3 mutant with a strong symbiotic phenotype also had significantly higher numbers of arbuscules at the lower growth temperature, even though the overall colonization level was very low (Figures 3E and 3F). At 18°C, the hyphae entered the nup85-3 epidermis and formed swollen structures at the interface of the epidermis and cortex; the hyphae emerging from these swollen structures

Figure 1. Root Hair Deformation, Infection Thread Formation, and Calcium Spiking.
NUP85 Required for Root Symbioses

Figure 2. AM Colonization.

(A) Wild-type plant inoculated with *G. intraradices*. *G. intraradices* formed appressoria (Ap) and entered between epidermal (Ep) cells. The hyphae penetrated the cortical (C) cells. The arrowhead shows the entry point of the hyphae into plant cells. The hyphae spread into the intercellular space of the cortex and then penetrated into inner cortical cells, where arbuscules (Ar) formed.

(B) *nup85-2* mutant inoculated with *G. intraradices*. The hyphae from appressoria could enter the epidermis but could not penetrate the outer cortical cells. The hypha (asterisk) has swollen at the epidermis/cortex interface.

(C) and (D) Different focal planes of the root surface of the *nup85-3* mutant inoculated with *G. intraradices*: surface of epidermal cells (C) and cell layer of outer cortex (D). Fungus has formed an appressorium on the root surface and can enter between epidermal cells (arrowheads). However, the hypha has stopped its growth and swollen at the epidermis/cortex interface. The asterisk indicates the swelling structure. The photos are representative of observations of at least six plants from each plant line. Bars = 50 μm.

spread into the cortex, and arbuscules occasionally formed in the inner cortical cells (Figure 3C). The number of nodules on the *nup85-2* and *nup85-3* mutants was also significantly increased at 18°C compared with at 22°C (Figures 3D and 3G), with the *nup85-3* mutant showing no nodules at 22°C but some at 18°C.

NUP85 Is Predicted to Encode a Nucleoporin

When the *nup85-3* mutant was backcrossed to the parental line *L. japonicus* B-129 Gifu, 68 of 210 F2 plants tested did not form nodules, indicating that the strong non-nodulation phenotype segregated as a monogenic recessive trait. The number of nodules on the *nup85-2* and *nup85-3* mutants was also significantly increased at 18°C compared with at 22°C (Figures 3D and 3G), with the *nup85-3* mutant showing no nodules at 22°C but some at 18°C.

Figure 3C

Figure 4C

To confirm that the nucleoporin-like gene is responsible for the observed mutant symbiotic phenotypes, the full-length cDNA was introduced into the *nup85-3* mutant using *Agrobacterium rhizogenes*–mediated hairy root transformation according to Kumagai and Kouchi (2003). The *nup85-3* roots transformed with the full-length cDNA developed nodules (Figure 5A) but roots transformed with an empty vector did not form nodules (Figure 5B). Nodulation by the *nup85-3* mutant was also complemented with a 16.6-kb genomic DNA fragment containing the nucleoporin-like gene and a predicted promoter (data not shown). The complementation tests demonstrate that the nucleoporin-like gene is required for nodule formation.

The nucleoporin-like gene encodes a protein of 712 residues with a predicted mass of 79.6 kD. The conceptual protein showed the highest level of similarity with a putative nucleoporin gene of *Arabidopsis thaliana* (At4g32910; 64.7% identity and 79.4% similarity). In addition, it also showed similarity along the entire sequence to human Nup75 (19.5% identity and 35.2% similarity) (Figure 6A), which is homologous to the *Saccharomyces cerevisiae* and vertebrate Nup85 protein (Cronshaw et al., 2002). Nucleoporins constitute the components of a nuclear pore complex, consisting of >30 nucleoporins and other elements (Rout et al., 2000; Cronshaw et al., 2002; Suntharalingam and Wente, 2003). Nearly two-thirds of the nucleoporins reveal some level of similarity between yeast and vertebrates, although for others, the amino acid sequences are not well conserved (Suntharalingam and Wente, 2003). For example, identity between yeast Nup133 and human Nup133 is only 18% in a limited ~360-amino acid residue region (Vasu et al., 2001). The Nup85 homologs from *Arabidopsis*, *Caenorhabditis elegans*, *Drosophila melanogaster*, *Oryza sativa*, *Schizosaccharomyces pombe*, *Xenopus*, and human have sizes ranging from 68 to 85 kD (Harel et al., 2003). Because of the sequence similarity, we refer to the *L. japonicus* nucleoporin-like protein as NUP85.

The *L. japonicus* NUP85 gene consists of 18 exons and 17 introns (Figure 4D). *nup85-1* has a non-sense mutation (TGG [Trp] to TGA [Stop]) in the eighth exon. *nup85-2* has a mutation at the 5’ intron acceptor site at the junction between the 13th exon and 13th intron, resulting in a deletion of the 13th exon in the mRNA as determined by sequencing the RT-PCR product (Figure 4E). *nup85-3* carries a mutation at the putative 5’ splice site at the junction between the 11th exon and 11th intron, resulting in a deletion of four nucleotides at the 3’ end of the 11th exon in the cDNA (Figure 4F). This causes a premature stop codon at 1414 nucleotides from the translation initiation site. The *nup85-4* allele (Murray et al., 2006) has a mutation at the 5’ intron acceptor site at the junction between the eighth exon and eighth intron (Figure 4D).
4D), which could affect splicing of the NUP85 gene. We raised anti-NUP85 antibody that binds to the C terminus of NUP85 protein. Immunoblots showed that NUP85 protein was detected in extracts of the wild type and nup85-2, but not nup85-3 (Figure 4G). The predicted size difference of NUP85 from the wild type and the nup85-2 mutant was probably not distinguishable by SDS-PAGE because the difference is only 2.3 kD.

A Highly Conserved Partial Sequence of NUP85 Exists in the L. japonicus Genome

Two cDNA probes of L. japonicus NUP85 were hybridized with genomic DNA of L. japonicus Gifu digested with EcoRI or HindIII (Figure 6B). The DNA bands detected by probe A (5' region of NUP85 gene) and probe B (3' region of NUP85 gene)
corresponded with the fragments predicted from the genomic sequence of \(NUP85 \). Additional bands clearly distinguishable from the \(NUP85 \) gene were also detected, indicating other conserved \(NUP85 \) sequences in the genome of \(L. japonicus \). Analysis of the available genomic sequence identified a highly conserved sequence (97% sequence similarity) corresponding to the genome sequence of \(NUP85 \) from +5517 to +6918 (taking the translation initiation site as +1) on the clone LJ03D18 (Figure 6C). This highly conserved sequence was predicted as a partial gene, in which candidates for start and stop codons were not predicted. The genome sequences in the vicinity of \(NUP85 \) exhibited no similarity to LJ03D18. This partial gene might have been generated by gene duplication in the partial sequence of \(NUP85 \).

NUP85 Is Expressed Constitutively

The expression level of \(NUP85 \) was examined by RT-PCR (Figure 7). \(NUP85 \) was expressed at similar levels in all organs tested (Figures 7A and 7D). \(M. loti \) inoculation did not affect the steady state level of \(NUP85 \) mRNA in infected roots, whereas the \(NIN \) gene was strongly upregulated (Figures 7B and 7C). \(G. intra- \)radices inoculation also did not affect \(NUP85 \) expression in...
mycorrhizal roots (Figures 7E and 7F). Expression levels of symbiotic genes, including NUP85, NFR1 (Radutoiu et al., 2003), NFR5 (Madsen et al., 2003), SymRK (Stracke et al., 2002), CASTOR (Imaizumi-Anraku et al., 2005), POLLUX (Imaizumi-Anraku et al., 2005), CCAMK (Tirichine et al., 2006), and NIN (Schauer et al., 1999), were analyzed in nup85-3 mutants (Table 2). The abundance of NUP85 transcript was reduced in nup85-3 compared with the wild type, whereas the steady state level of other symbiotic transcripts was not different from that seen in the wild type.

nup85 Does Not Arrest Plant Growth but Does Reduce Seed Yield

To ascertain whether the mutations of NUP85 affect physiological functions of L. japonicus as well as symbiotic associations, we examined the vegetative and reproductive growth of the nup85 mutants. The growth of the nup85-2 and nup85-3 mutants was analyzed under uninoculated conditions by growing the plants aseptically in a plastic container with 5 mM KNO₃ added to the BandD solution (Figure 8A). Shoot and root growth of the nup85-2 mutant was slightly slower than that of both the wild type and the nup85-3 mutant, but analysis of variance results confirmed that there was no significant effect of plant line ($F = 2.55; P = 0.095$) on shoot dry weight or an interaction between plant line and sampling time ($F = 0.51; P = 0.729$), indicating no difference in growth between plant lines during 6 weeks. With M. loti–inoculated plants grown on nitrogen-free BandD solution, the shoot growth of nup85-2 and nup85-3 mutants was less than that of the wild type, whereas there was no significant effect on root growth (Figure 8B). When grown in a complete nutrient-rich medium, the seedpod length of the nup85-3 mutant was significantly shorter than that of the wild type and the nup85-2 mutant (Figure 8C), whereas average plant lengths and leaf sizes were not significantly different among plant lines (data not shown). The number of seeds per pod in both nup85-2 and nup85-3 mutants was significantly decreased compared with the wild type (Figure 8D). Notably, the number of seeds in the nup85-3 mutant was significantly lower than in the nup85-2 mutant (Figure 8D). Seed weight of the nup85-2 mutant was significantly greater than that of the wild type, whereas that of nup85-3 was not different from the wild type (Figure 8E). In vitro growth rates of pollen tubes in nup85 mutants were markedly reduced compared with the wild type (Figure 8F).

DISCUSSION

The L. japonicus nucleoporin gene NUP85 was identified as a common Sym gene. Nucleoporins are components of the nuclear pore complex, consisting of >30 nucleoporins and other elements (Rout et al., 2000; Cronshaw et al., 2002; Suntharalingam and Wente, 2003). The nuclear pore complex mediates macromolecular transport, such as mRNA export and protein import across the nuclear envelope. In vertebrates, Nup85 is part of the Nup107-160 subcomplex, which constitutes a central part of the nuclear pore complex, including Nup107, Nup160, Nup133, Nup96, Sec13, Nup43, Nup37, and Seh1 (Walther et al., 2003). The vertebrate Nup107-160 complex resides on both sides of the central framework of the nuclear pore complex and represents the core element of the central framework (Lim and Fahrenkrog, 2006). Recently, L. japonicus NUP133, a likely component of the Nup107-160 subcomplex, was also shown to be a common Sym gene required for AM and nodulation (Kanamori et al., 2006). In Arabidopsis, Nup96 has been postulated to be involved in basic defense and constitutive resistance responses to pathogens mediated by a resistance gene (R gene) (Zhang and Li, 2005). In addition, mouse Nup96 has been shown to be involved in antiviral functions (Faria et al., 2006). These data indicate that the Nup107-160 subcomplex containing NUP85, NUP133, and NUP96 is an important component in not only plant–microbe interactions but also in animal–microbe interactions.

Nup85p of yeast has several cellular functions, such as mRNA export (Goldstein et al., 1996), nuclear pore complex assembly (Siniossoglou et al., 2000), and localization of the small GTPase Gsp1p (Gao et al., 2003). Such functions of yeast Nup85p seem to be related to general phenomena. In addition, L. japonicus NUP85 constitutively expressed at similar levels in all organs and was not up- or downregulated by Nod factor application. These results led us to speculate that mutations in NUP85 could affect overall plant growth. However, NUP85 appears to be mainly involved in symbiotic functions and seed yield. In Drosophila, a mutation in Nup88 did not affect mRNA export or global protein import but selectively impaired import of a Rel family protein, which is a transcription factor required for innate immune responses via the Toll-like receptors (Uv et al., 2000). The authors
Mythological characters also contributed to the understanding of the process. Many believe that the sudden appearance of the characters is related to the presence of a specific gene, which is activated under certain conditions. This gene is believed to be involved in the regulation of the characters' appearance, and its expression is thought to be essential for the manifestation of the characters. Further research is needed to fully understand the role of this gene and its interaction with other regulatory mechanisms.
Figure 7. Gene Expression.

(A) to (C) M. loti inoculation.
(A) Expression of NUP85 in uninfected roots (UR), shoots of uninoculated plants (US), infected roots (IR), shoots of inoculated plants (IS), and nodules (N) at 3 weeks after inoculation treatment. Expression levels are normalized on the basis of the amount of EF-1 and expressed relative to uninfected roots.
(B) and (C) Expression of NUP85 and NIN from 0 to 8 d following inoculation. Expression levels are expressed relative to day 0.
(D) to (F) G. intraradices inoculation.
(D) Expression of NUP85 in nonmycorrhizal roots (NM), mycorrhizal roots (AM), and shoots of mycorrhizal plants (S) at 3 weeks after inoculation treatment. Expression levels are normalized on the basis of the amount of EF-1 and expressed relative to nonmycorrhizal roots.
(E) Expression of NUP85 from 0 to 3 weeks following inoculation. Expression levels are expressed relative to day 0.
(F) AM colonization. Gray and white bars show hyphal colonization (HC%) and arbuscular colonization (AC%), respectively. Values are the means of three experiments of different samples. SD is indicated.
is no evidence that the structural changes actually affect the calcium permeability of nuclear pores. Observations of the structural changes of nuclear pores after treatment with Nod factor and measurement of nuclear pore size in nup85 and nup133 mutants are required to clarify the role of symbiotic NUP proteins in calcium spiking. Despite the fact that Nod factor failed to induce calcium spiking in the nup85 mutants, there was clear rhizobial infection through infection threads, albeit at a lower level, as well as subsequent nodule formation. This could be explained by the decrease in responsible cells or a gradual increase in nuclear calcium. As has been proposed by Miwa et al. (2006), infection thread formation requires two distinct signaling steps: (1) morphological change in root hair cells that functions in entrapment of rhizobia at the root hair tip, and (2) calcium signaling and subsequent induction of ENOD genes associated with infection threads (Scheres et al., 1990; Journet et al., 2001). One possibility is that a transient but not repetitive calcium increase is enough to activate the activity of CCaMK, which is responsible for the subsequent ENOD gene expression and nodule formation (Gleason et al., 2006; Tirichine et al., 2006). Alternatively, there is a possibility that calcium spiking might be induced much later than the wild type beyond the time-course measurement of the calcium spiking assay, as nodule formation was delayed in nup85 mutants.

The nup85 mutants showed temperature-dependent symbiotic phenotypes, and the same was observed in the nup133 nucleoporin mutant of L. japonicus (Kanamori et al., 2006). In yeast, mutants defective in some nucleoporin genes are known to have temperature-sensitive growth (Wente and Blobel, 1993; Li et al., 1995; Goldstein et al., 1996). The underlying molecular mechanisms of the temperature-sensitive phenotype is unknown even in yeast, but there is evidence based on time-lapse atomic force microscopy that temperature-dependent plugging and unplugging of nuclear pores can occur in Xenopus (Stoffler et al., 2003). The temperature-dependent plasticity of nuclear pore plugging may be related to temperature-sensitive symbiotic phenotypes in nup85. In addition to the effects of mutation in NUP85 on the temperature-dependent phenotypes, temperature sensitivity of AM fungi might also be involved because

Table 2. Symbiotic Gene Expression in Uninoculated Roots of the nup85-3 Mutant

<table>
<thead>
<tr>
<th>Gene</th>
<th>Relative Expression (nup85-3/Wild Type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUP85b</td>
<td>0.20 ± 0.05</td>
</tr>
<tr>
<td>NFR1</td>
<td>1.00 ± 0.10</td>
</tr>
<tr>
<td>NFR5</td>
<td>0.93 ± 0.09</td>
</tr>
<tr>
<td>SymRK</td>
<td>0.84 ± 0.12</td>
</tr>
<tr>
<td>CASTOR</td>
<td>1.11 ± 0.21</td>
</tr>
<tr>
<td>POLLUX</td>
<td>1.39 ± 0.36</td>
</tr>
<tr>
<td>CCaMK</td>
<td>1.07 ± 0.14</td>
</tr>
<tr>
<td>NIN</td>
<td>1.06 ± 0.39</td>
</tr>
</tbody>
</table>

a Expression levels are normalized on the basis of the amount of EF-1 and shown relative to the wild type. Mean ± SD (n = 3).
b Ratio of the expression of NUP85 to EF-1 was 0.06 in the wild-type plants.
arbuscule colonization of the wild-type plant was affected by growth temperature. Several studies have shown that there was a positive correlation between AM colonization and temperature (Heinemeyer and Fitter, 2004; Gavito et al., 2005), although our results show the opposite relationship.

In a mutant carrying the weak allele nup85-2, checkpoints for mycorrhizal development were dependent on growth temperature. The first checkpoint was entry in the outer cortical cells because fungal colonization was blocked at the epidermal-cortical interface of the nup85-2 mutant grown at 24°C. At 22°C, some hyphae could penetrate the outer cortical cells, which was followed by growth of hyphae between cortical cells. However, arbuscules within inner cortical cells were only formed at low frequency. This indicates that the second checkpoint is at the entry within inner cortical cells. At 18°C, arbuscules were formed normally within inner cortical cells. These results suggest that NUP85 helps with an accommodation of the hyphae within cortical cells. Novero et al. (2002) demonstrated that CASTOR is required not only for fungal entry into epidermal and outer cortical cells but also for arbuscule formation in inner cortical cells through analysis of later colonization stages of a weak castor-1 allele (previously Ljsym4-1). CASTOR and NUP85 are thought to function as mediators of fungal entry in plant cells.

We reported that in addition to defects in symbiotic interactions, nup85 mutants decreased seed yield. A similar seed yield decrease was seen with the nup133 mutants (Kanamori et al., 2006). Interestingly in the case of the nup85 mutants, pollen tube growth was markedly reduced (Figure 8F). Defects in male gametophyte development during fertilization as well as seriously reduced seed production are similar to that seen in the L. japonicus crinkle mutant (Tansengo et al., 2004). Careful characterization of male gametophyte development in the nup and crinkle mutants in the future may provide new insights into the molecular basis of plant reproductive biology.

METHODS

Biological Materials

Lotus japonicus B-129 Gifu was used as a wild type, nup85-1 (Ljsym24), nup85-2 (Ljsym73), and nup85-3 (Ljsym85) are alleles affecting AM and nodule symbioses in mutants isolated from ethyl methanesulfonate-mutagenized L. japonicus B-129 (Szczyglowski et al., 1998; Kawaguchi et al., 2002; Sandal et al., 2006). For allelism test, plants were crossed reciprocally according to Jiang and Gresshoff (1997). A possible allelic mutant, B46-D (Murray et al., 2006), is assigned as crossed reciprocally according to Jiang and Gresshoff (1997). A possible allelic mutant, B46-D (Murray et al., 2006), is assigned as

Root Hair Deformation Assay

Seeds of the wild type, nup85-2, and nup85-3 were germinated on 1% agar with half-strength Broughton and Dilworth (B&D) solution (Broughton and Dilworth, 1971) containing 0.1 µM L-o-(2-aminoethoxy vinyl)glycine (Sigma-Aldrich). Plates were wrapped with aluminum foil and placed in an incubator for 2 d in the dark. After 24 h, seedlings with abnormal growth were removed and plates were placed in an incubator for another 24 h. The seedlings, which then had an average 7-mm taproot length, were used for analysis. Nod factor was purified from M. loti harboring pMP2112 according to the method described by Niwa et al. (2001) and dissolved in distilled water (10⁻⁶ M). The nod factor was diluted to 10⁻⁸ M with half-strength strength of B&D solution and was gently applied to 2-d-old seedlings to avoid disturbing root hairs. One half strength of B&D solution was applied as control. Seedlings were collected 24 h after treatment. Samples were fixed for 15 min with 2% paraformaldehyde dissolved in half-strength B&D solution. Following gentle mount on a glass slide (76 x 26 mm; Matsunami Glass Ind.) and covering with a cover glass (18 x 18 mm; Matsunami Glass Ind.), samples were examined by a bright-field microscope (BX-50; Olympus). Images were captured with a CCD camera (DP70; Olympus).

Infection Thread Formation

To visualize infection threads, roots were inoculated with M. loti NZP2235 expressing the lacZ reporter gene. Seeds of the wild type, nup85-2, and nup85-3 were sown in autoclaved vermiculite (Tekunon) supplied with B&D solution containing 0.5 mM KNO₃. Seedlings (7 d old) were inoculated with the M. loti strains at a density of 108 cells mL⁻¹. Five days later, infection threads were visualized by staining for β-galactosidase activity, as described by Tansengo et al. (2003). Infection threads were observed using an Olympus BX51 microscope under bright-field illumination. Significant differences of number of infection threads between the plant lines were analyzed with the Turkey’s multiple comparison test (P < 0.05) using JMP (SAS).

Calcium Spiking

Seedlings were mounted and microinjected with Oregon green dextran dye and Texas red dextran as described (Harris et al., 2003; Miwa et al., 2006). Fluorescence was imaged using an inverted microscope coupled to a digital CCD camera. After microinjection, root hairs were left at least 20 min before Nod factor addition, and only cells showing active cytoplasmic streaming were used for the analysis. Nod factor was added directly to an incubation chamber to give an estimated final concentration of 10⁻⁶ M.

AM Colonization

L. japonicus plants were inoculated with 500 spores of G. intraradices per plant in a mixture (5:4:1 by volume) of autoclaved humus-rich Ando soil, sand, and a commercial horticulture medium (Kureha). The plants were grown in a growth cabinet at 24 ± 2°C with 16 h of light and 8 h dark. Harvested roots were cleared with 10% KOH and stained with 0.05% trypan blue using a phenol-free modification of the method of Phillips and Hayman (1970). Hyphal (HC%), arbuscular (AC%), and vesicular colonization (VC%) was determined as the percentage of root length colonization using a magnified intersection method at x200 (McGonigle et al., 1990). Trypan blue–stained structures were observed under a bright-field microscope (BX51; Olympus), and images were acquired using a CCD camera (DP70; Olympus).

Experiments of Temperature Effect on Mycorrhization and Nodulation

The wild type, nup85-2, and nup85-3 were inoculated with spores of G. intraradices in the soil mixture described or M. loti in autoclaved vermiculite (Tekunon) supplied with nitrogen-free BandD solution. The plants were grown in growth cabinets at 22 ± 0.5°C or 18 ± 0.5°C for 1 month. The arcine-transformed mycorrhizal colonization (HC% and AC%) and
the number of nodules were compared with growth temperatures using t test of JMP (SAS) for each plant line.

Positional Cloning

NUP85 was mapped with three independent F2 mapping populations, resulting from a cross of nup85-1 and MG-20 Miyakojima and crosses between nup85-2 or nup85-3 and L. brutii. The genomic DNA was extracted from leaves and analyzed by SSLP markers and derived cleaved amplified polymorphic sequence (dCAPS) markers. Primer sequences used for molecular markers were as follows: SSLP markers, derived from Tm0171 (5'-ATCTCCCTCACTGACCTTT-3' and 5'-GTTATTTTTCTCAGTTGG-3'), TM0171e (5'-GCACTTGGACCCATAAAA-3' and 5'-TTAGACGTTGCAACAATTT-3'), TM1792b (5'-CACAATTTCGCGGT-TATG-3' and 5'-CCTTTGTTAAGGCGCTGATG-3'), TM1792e (5'-AGC-CAGTGTAGTGGAGAACC-3' and 5'-ATTTTGCCGCGGGAAGTA-3'), BM1918b (5'-TGCTGCTAGTTGAGCGTGGTT-3' and 5'-TCCATTCGAAACCAACATCA-3'), TM1209b (5'-CCACAGGCGTGTACACG-3' and 5'-TCCACAATAAGACACCTCCTCA-3'); dCAPS marker, TM1858d1 (5'-GCAACATCTGGGAAAGAAG-3' and 5'-TCCTGGTTGGAACACTGCAA-3') (restriction enzyme: HindII). Sequences of BAC/TAC clones were analyzed by GENSCAN version 1.0 (http://genes.mit.edu./GENSCAN.html) and BLAST (http://www.ncbi.nlm.nih.gov./BLAST/). ClustalW was used for multiple alignments.

Complementation Tests

For complementation of the nup85-3 mutation, full-length cDNA was amplified from cDNA clone MFB015g09 (Asamizu et al., 2004) and cloned into pGUN. The pGUN is a derivative of pCAMBIA1300 (CAMBIA). The hygromycin phosphotransferase gene of pCAMBIA under the control of the 3SS promoter was replaced with sGFP (S6ST; Niwa et al., 1999), and then the promoter region of Lotus polyubiquitin gene was inserted in the multiple cloning site of pCAMBIA, with a new multiple cloning site and a NOS terminator from pBI121 to confer strong and stable expression of a gene (M. Hayashi, unpublished results). Hair roots were transformed using A. rhizogenes according to Kumagai and Kouchi (2003). The transformed plants were inoculated with M. loti and grown in growth cabinets at 22°C. Transformed hairy roots were selected by observing GFP expression using epifluorescent stereomicroscopy and confirmed nodule formation after M. loti inoculation.

DNA Hybridization

Two probes, NUP85 probes A and B, were prepared for DNA hybridization. Probe A and probe B recognized the 5' (84 to 1314) and 3' (1445 to 2073) regions of the coding sequence, respectively (Figure 6C). A fragment of NUP85 was amplified with the primers 5'-CCATGGGCC-TCTCCCTTCCAAATTT-3' and 5'-CTCTGCTGGCTCAGTCCGCA-GTC-3' for probe A and with 5'-GCTATGAAGCAAGATGGCTGTT-3' and 5'-TTCAGGAGGTAAGCTGCGTATG-3' for probe B from the cDNA clone MFB015g09. The fragments were labeled with [32P]-dCTP using Megaprime (Amersham) following the manufacturer’s protocols. Genomic DNA was extracted from leaves of L. japonicus Gifu digested with EcoRI or HindIII, transferred to nylon membrane, and hybridized with the probe. The membrane was exposed to an imaging plate (Fujiﬁlm), and signals were detected with FLA-2000 (Fujiﬁlm).

Immunoblot Analysis

To prepare anti-NUP85 antibody, a peptide derived from the C terminus of the NUP85 protein, CTNLGRAILDE, was chosen as an immunogen by Sigma-Aldrich Japan’s in-house software. Sigma-Aldrich Japan synthesized the peptide, immunized two rabbits by injecting the immunogen every 2 weeks over 2 months, and prepared antisera by standard protocols. Antibody titer of a serum against the peptide was evaluated by an enzyme-linked immunosorbent assay. An anti-NUP85 antibody was puriﬁed from a serum showing higher titer by peptide afﬁnity chromotography. Wild-type, nup85-2, and nup85-3 roots were homogenized in liquid nitrogen with a pestle. Cell lysates were extracted in 50 mM Tris-HCl, pH 6.8, 6% 2-mercaptoethanol, 10% glycerol, 2% sodium dodecyl sulfate, and 0.005% bromphenol blue. Proteins in extracts were resolved by SDS-PAGE and transferred onto a polyvinylidene difluoride membrane (Millipore) and then reacted with anti-NUP85 antisera followed by horseradish peroxidase-conjugated anti-rabbit IgG antibody (Jackson ImmunoResearch Laboratories). Immunodetection was performed with Immobilon Western (Millipore). Chemiluminencescence was detected with an imaging system (LAS-1000 plus; Fujiﬁlm).

Gene Expression Analyses

For the analyses of gene expression in M. loti–inoculated plants, 3-d-old seedlings of L. japonicus Gifu were grown on 1% agar medium (BandD containing 10 μM KNO3) for 2 d. The seedlings were inoculated with M. loti (106 cells per plate). For the analysis of AM plants, L. japonicus Gifu were inoculated with 500 spores of G. intraradices per plant in autoclaved vermiculite (Asahikogyo) supplied with modiﬁed BandD solution containing 5 mM KNO3 and 50 μM KH2PO4. For expression analysis of genes in the wild type and the nup85-3 mutant, seedlings were grown on 1% agar plates supplied with BandD solution and 10 μM KNO3 for 2 d, and total RNA was extracted from roots. Total RNA was extracted with the RNasey Plant Mini kit (Qiagen) and treated with DNase I (Takara Biotechnology). Levels of expression were analyzed by semiquantitative RT-PCR with the primers NUP85 (5'-CAATTGCCGCAAATGTTGAC-G3' and 5'-TCAATCTGA-GCCATGCTTGGA-3'), elongation factor-1 (EF-1) (5'-GCACTGCTTTTG-TGACATTGTTT-3' and 5'-CTGAGCATGAACTCTTCTCA-3'), NFR1 (5'-TGGTACCTGACGAAATGGA-3' and 5'-TCTGGCTCTTGTGTCAC-3'), NFR5 (5'-GGTTCTGTTATCTGACCAATCA-3' and 5'-GATTTGAAGGCGGAAATGGA-3' and 5'-TCTCGTTTACGTTTGTCA-3'), SymRK (5'-ACAAAGCGAGCCTTTGAAGTT-3' and 5'-AATTGTAGACGTTGAC-3'), CASTOR (5'-AGTGCTGGCCTAGCATAAG-3' and 5'-AGTACACGAAGTACAACGC-3'), POLLUX (5'-TTACGCAATGCTTGGACG-3' and 5'-AGTACACGATCGTACCAGA-3'), and CcAMK (5'-GGAGAATGACGATCGTACAA-3' and 5'-CGGTGACGATGGGAAGTA-3'). Semiquantitative RT-PCR was performed using ABI GeneAmp 5700 or ABI Prism 7000 (Applied Biosystems) with a Quantitect SYBR Green RT-PCR kit (Qiagen). Expression levels were normalized on the basis of EF-1 quantity.

Growth Analysis under Uninoculated and M. loti–Inoculated Conditions

Seeds of the wild type, nup85-2, and nup85-3 were treated with sulfuric acid and sown in autoclaved vermiculite (Tekunoh). For the growth analysis under an M. loti–inoculated condition, the plants were supplied with nitrogen-free BandD solution and inoculated with M. loti. The plants under an uninoculated condition were supplied with BandD solution containing 5 mM KNO3. The plants were grown in a growth chamber at 22°C, harvested at 2, 4, and 6 weeks after sowing, and cut into shoot and root. These parts were dried separately at 65°C for 48 h and then weighed. To test the differences of the growth among the plant lines, the dry weight was transformed as log (Y + 1) was analyzed with two-way analysis of variance of the effects of plant lines, sampling days and their interaction. Significant differences between means of the plant line were analyzed with Turkey’s multiple comparison test (P < 0.05) using JMP (SAS). Pollen grains were collected from fully open flowers and
put on a thin layer of pollen germination medium prepared on a micro-
scope slide. We used the following germination medium described by
Tansengco et al. (2004) with some modifications: 10% sucrose, 0.01%
H$_3$BO$_3$, 0.05% Ca(NO$_3$)$_2$, 0.7% Bacto agar. Samples were
incubated in Petri dishes with moist filter papers and incubated for 1 or 2 h
at 22°C. Pollen tube growth was examined at different time intervals after
germination. At least 13 pollen tubes were chosen randomly for pollen
tube length measurements.

Accession Numbers
Sequence data from this article can be found in the GenBank/EMBL/
DDBJ data libraries under accession numbers AB284835, AP009251,
AP009252, AP009253, AP009254, and AP009255.

ACKNOWLEDGMENTS
We thank Giles Oldroyd and Jongho Sun (Sainsbury Laboratory) for help
with establishing and using microinjection and epifluorescence micros-
copy. We also thank Jodie Pike and Kate Vickers (Sainsbury Labora-
ty). Tomomi Nakagawa (National Institute of Agrobiological Sciences),
Asuka Kuwabara (University of Tokyo), and Jeremy Murray (Agriculture
and Agri-Food Canada) for experimental supports. The work was
supported by the Biotechnology and Biological Science Research
Council for J.A.D., the Core Research for Evolutional Science and
Technology of Japan Science and Technology Agency, Grants-in-Aid
for Scientific Research on Priority Areas from the Ministry of Education,
Culture, Sports, Science, and Technology of Japan for M.K., and the
Kazusa DNA Research Foundation. H.M. was supported by a John
Innes Foundation Studentship and by an award from the Universities
UK, Overseas Research Students Awards Scheme. Research at the
Sainsbury Laboratory is funded by the Gatsby Charitable Foundation.

Received August 29, 2006; revised December 4, 2006; accepted January

REFERENCES
teristics of the Lotus japonicus gene repertoire deduced from large-
scale expressed sequence tag (EST) analysis. Plant Mol. Biol. 54:
405–414.
Bonfante, P., Genre, A., Faccio, A., Martini, I., Schauer, L., Stougaard,
gene is required for the successful symbiotic infection of root epider-
Cárdenas, L., Feijó, J.A., Kunkel, J.G., Sánchez, F., Holdaway-
factors induce increases in intracellular free calcium and extracellular
Cronshaw, J.M., Krutchinsky, A.N., Zhang, W., Chait, B.T., and
Matunis, M.J. (2002). Proteomic analysis of the mammalian nuclear
Demchenko, K., Winzer, T., Stougaard, J., Parniske, M., and
Pawlowski, K. (2004). Distinct roles of Lotus japonicus SYMRK and
SYM15 in root colonization and arbuscule formation. New Phytol.
163: 381–392.
Dénarié, J., Debellé, F., and Promé, J.-C. (1996). Rhizobium lipo-
chitooligosaccharide nodule factors: Signaling molecules mediat-
Duc, G., Trouvelot, A., Gianinazzi-Pearson, V., and Gianinazzi, S.
(1989). First report of non-mycorrhizal plant mutants (myc-) obtained
in pea (Pisum sativum L.) and fababean (Vicia faba L.). Plant Sci. 60:
215–222.
plant root hairs responding to rhizobium nodulation signals. Cell 85:
673–681.
Endre, G., Keresztes, A., Kevei, Z., Mihacea, S., Kaló, P., and Kiss, G.B.
(2002). A receptor kinase gene regulating symbiotic nodule develop-
Faria, A.M.C., Levay, A., Wang, Y., Kamphorst, A.O., Rosa, M.L.P.,
Nussenzveig, D.R., Balkan, W., Chook, Y.M., Levy, D.E., and
proper expression of interferon-regulated proteins and functions.
Immunity 24: 295–304.
Nuclear accumulation of the small GTPase Gsp1p depends on
nucleoporins Nup133p, Rat2p/Nup120p, Nup85p, Ncp96p, and the
Gavito, M.E., Olsson, P.A., Rouhier, H., Medina-Peñafiel, A., Jakobsen,
on the growth and functioning of root organ cultures with arbuscular
Genre, A., and Bonfante, P. (2002). Epidermal cells of a symbiosis-
defective mutant of Lotus japonicus show altered cytoskeleton organ-
isation in the presence of a mycorrhizal fungus. Protoplasma 219:
43–50.
Gianinazzi-Pearson, V. (1996). Plant cell responses to arbuscular
mycorrhizal fungi: Getting to the roots of the symbiosis. Plant Cell
8: 1871–1883.
Gleason, C., Chaudhuri, S., Yang, T., Muñoz, A., Poovaiah, B.W., and
by a calcium-activated kinase lacking autoinhibition. Nature 441:
1149–1152.
Pleiotropic nuclear defects associated with a conditional allele of
Harel, A., Orjalo, A.V., Vincent, T., Lachish-Zalait, A., Vasu, S., Shah,
of a single pore subcomplex results in vertebrate nuclei devoid of
16: 335–341.
Harrison, M.J. (1999). Molecular and cellular aspects of the arbuscular
50: 361–389.
Hayashi, M., et al. (2001). Construction of a genetic linkage map of the
model legume Lotus japonicus using an intraspecific F$_2$ population.
DNA Res. 8: 301–310.
arbuscular mycorrhizal (AM) symbiosis: Growth responses of the host
Imaiizumi-Anraku, H., et al. (2005). Plastid proteins crucial for symbi-
Jiang, Q., and Gresshoff, P.M. (1997). Classical and molecular genet-
ics of the model legume Lotus japonicus. Mol. Plant Microbe Interact.
10: 59–68.

