ON THE COVER

The endosperm of flowering plants is a triploid nutritious seed tissue surrounding the embryo. Baroux et al. (pages 1782–1794) found an atypical chromatin organization in endosperm nuclei, which responds to imbalanced parental dosage. The main image shows a three-dimensional reconstruction of a young Arabidopsis seed stained in whole mount for DNA. The endosperm nuclei (yellow) fill the seed inside the sporophytic seed coat (green), while the zygote has just divided once (two nuclei; orange). The insets from left to right show various aspects of endosperm nuclei: (1) they appear very large compared with sporophytic nuclei and are surrounded by mitochondria, (2) their chromatin shows atypical interspersed heterochromatin foci, (3) their euchromatin is enriched in the heterochromatic H3K9me1 mark (green), and (4) their chromosome territories are expanded (red). The image was created with Imaris 5.7 (Bitplane).

IN THIS ISSUE

Oxidation Pathways and Plant Development: Crosstalk between Thioredoxin and Glutaredoxin Pathways
Nancy A. Eckardt

IN BRIEF

Analysis of Small RNAs in the Basal Plant Lineages Physcomitrella and Selaginella
Retrograde Signaling from Chloroplast to Nucleus
Nancy A. Eckardt

RESEARCH ARTICLES

Genetic and Epigenetic Alteration among Three Homoeologous Genes of a Class E MADS Box Gene in Hexaploid Wheat
Naoki Shitsukawa, Chikako Tahira, Ken-ichiro Kassai, Chizuru Hirabayashi, Tomoaki Shimizu, Shiego Takumi, Keiichi Mochida, Kanako Kawaura, Yasunari Ogihara, and Koji Murai

Transcriptionally Active Heterochromatin in Rye B Chromosomes

Common Functions for Diverse Small RNAs of Land Plants
Michael J. Axtell, Jo Ann Snyder, and David P. Bartel

Suppression of RICE TELOMERE BINDING PROTEIN1 Results in Severe and Gradual Developmental Defects Accompanied by Genome Instability in Rice
Jong-Pil Hong, Mi Young Byun, Dal-Hoe Koo, Kyungsook An, Jae-Wook Bang, In Kwon Chung, Gynheung An, and Woo Taek Kim

The Triploid Endosperm Genome of Arabidopsis Adopts a Peculiar, Parental-Dosage-Dependent Chromatin Organization
Célia Baroux, Ales Pecinka, Jörg Fuchs, Ingo Schubert, and Ueli Grossniklaus

Arabidopsis JAGGED LATERAL ORGANS Is Expressed in Boundaries and Coordinates KNOX and PIN Activity
Lorenzo Borghi, Marina Bureau, and Rüdiger Simon

BLADE-ON-PETIOLE1 and 2 Control Arabidopsis Lateral Organ Fate through Regulation of LOB Domain and Adaxial-Abaxial Polarity Genes
Chan Man Ha, Ji Hyung Jun, Hong Gil Nam, and Jennifer C. Fletcher
Mutations in Arabidopsis Multidrug Resistance-Like ABC Transporters Separate the Roles of Acropetal and Basipetal Auxin Transport in Lateral Root Development
Guosheng Wu, Daniel R. Lewis, and Edgar P. Spalding

Separating the Roles of Acropetal and Basipetal Auxin Transport on Gravitropism with Mutations in Two Arabidopsis Multidrug Resistance-Like ABC Transporter Genes
Daniel R. Lewis, Nathan D. Miller, Bessie L. Spillt, Guosheng Wu, and Edgar P. Spalding

Inactivation of Thioredoxin Reductases Reveals a Complex Interplay between Thioredoxin and Glutathione Pathways in Arabidopsis Development
Jean-Philippe Reichheld, Mehdi Khafif, Christophe Riondet, Michel Droux, Geraldine Bonnard, and Yves Meyer

Reciprocal Phosphorylation and Glycosylation Recognition Motifs Control NCAPP1 Interaction with Pumpkin Phloem Proteins and Their Cell-to-Cell Movement
Ken-ichiro Taoka, Byung-Kook Ham, Beatriz Xoconostle-Cázares, Maria R. Rojas, and William J. Lucas

INCREASED SIZE EXCLUSION LIMIT2 Encodes a Putative DEVH Box RNA Helicase Involved in Plasmodesmata Function during Arabidopsis Embryogenesis
Ken Kobayashi, Marisa S. Otegui, Sujatha Krishnakumar, Michael Mindrinos, and Patricia Zambrisky

Ubiquitin Lysine 63 Chain–Forming Ligases Regulate Apical Dominance in Arabidopsis
Xiao-Jun Yin, Sara Volk, Karin Ljung, Norbert Mehler, Karel Dolezal, Frannck Ditengou, Shigeru Hanano, Seth J. Davis, Elmon Schmelzer, Göran Sandberg, Markus Teige, Klaus Palme, Cecile Pickart, and Andreas Bachmair

SDR1 Is a RING Finger E3 Ligase That Positively Regulates Stress-Responsive Abscisic Acid Signaling in Arabidopsis
Yiyue Zhang, Chengwei Yang, Yin Li, Nuoyan Zheng, Hao Chen, Qingzheng Zhao, Ting Gao, Huishan Guo, and Qi Xie

ACTIN BINDING PROTEIN29 from Lilium Pollen Plays an Important Role in Dynamic Actin Remodeling
Yun Xiang, Xi Huang, Ting Wang, Yan Zhang, Qinwen Liu, Patrick J. Hussey, and Hailun Ren

Structural Evidence for the Evolution of Xyloglucanase Activity from Xyloglucan Endo-Transglycosylases: Biological Implications for Cell Wall Metabolism
Martin J. Baumann, Jens M. Ektöf, Gurvan Michel, Åsa M. Kallas, Tuula T. Teeri, Mirjam Czjzek, and Harry Brumer III

In Vivo Visualization of Mg-ProtoporphyrinIX, a Coordinator of Photosynthetic Gene Expression in the Nucleus and the Chloroplast
Elisabeth Ankele, Peter Kindgren, Edouard Pesquet, and Åsa Strand

LPA2 Is Required for Efficient Assembly of Photosystem II in Arabidopsis thaliana
Jinfang Ma, Lianwei Peng, Jinkui Guo, Qingtao Lu, Congming Lu, and Lixin Zhang

Rational Conversion of Substrate and Product Specificity in a Salvia Monoterpene Synthase: Structural Insights into the Evolution of Terpene Synthase Function

A Heteromeric Plastidic Pyruvate Kinase Complex Involved in Seed Oil Biosynthesis in Arabidopsis
Carl Andre, John E. Froehlich, Matthew R. Moll, and Christoph Benning

The Arabidopsis MATE Transporter TT12 Acts as a Vacuolar Flavonoid/H+–Antipporter Active in Proanthocyanidin-Accumulating Cells of the Seed Coat
Krasimira Marinova, Lucille Pourcel, Barbara Weder, Michael Schwarz, Denis Barron, Jean-Marc Routaboul, Isabelle Debeaujon, and Markus Klein
Arabidopsis Cytochrome P450 Monoxygenase 71A13 Catalyzes the Conversion of Indole-3-Acetaldoxime in Camalexin Synthesis

Majse Nafisi, Sameer Goregaoker, Christopher J. Botanga, Erich Glawischnig, Carl E. Olsen, Barbara A. Halkier, and Jane Glazebrook

Suppression of Antiviral Silencing by Cucumber Mosaic Virus 2b Protein in Arabidopsis Is Associated with Drastically Reduced Accumulation of Three Classes of Viral Small Interfering RNAs

Juan A. Díaz-Pendon, Feng Li, Wan-Xiang Li, and Shou-Wei Ding

Rice WRKY45 Plays a Crucial Role in Benzothiadiazole-Inducible Blast Resistance

Masaki Shimon, Shoji Sugano, Akira Nakayama, Chang-Jie Jiang, Kazuko Ono, Seiichi Toki, and Hiroshi Takatsuji

Bacterial Cyclic β-(1,2)-Glucan Acts in Systemic Suppression of Plant Immune Responses

Luciano Ariel Rigano, Caroline Payette, Geneviève Brouillard, Maria Rosa Marano, Laura Abramowicz, Pablo Sebastián Torres, Maximina Yun, Attilio Pedro Castagnaro, Mohamed El Oirdi, Vanessa Dufour, Florencia Malamud, John Maxwell Dow, Kamal Bouarab, and Adrian Alberto Vojnov

Online version contains Web-only data.

Open Access articles can be viewed online without a subscription.

The Plant Cell (ISSN 1040-4651, online ISSN 1531-298X) is published monthly (one volume per year) by the American Society of Plant Biologists, 15501 Monona Drive, Rockville, MD 20855-2768, and is produced by Dartmouth Journal Services, Waterbury, VT. The institutional price for the print and online versions is based on type of institution; contact institution@aspb.org. A subscription includes both The Plant Cell and Plant Physiology; single copies may be purchased for $75 each, plus $7 shipping (U.S.) or $9 (outside U.S.). Members of the American Society of Plant Biologists may subscribe to The Plant Cell for $160. Nonmember individuals may subscribe for $325. For matters regarding subscriptions, contact Suzanne Cholwek, ASPB, 15501 Monona Drive, Rockville, MD 20855-2768; telephone 301/251-0560, ext. 141; fax 301/251-6740; e-mail scholwek@aspb.org. Notify ASPB in writing within 3 months (domestic) or 6 months (foreign) of issue date, and defective copies or copies lost in the mail will be replaced. Send all inquiries regarding display advertising to Susan Mergenhagen, FASEB AdNet, 9650 Rockville Pike, Bethesda, MD 20814-3998; telephone 301/634-7103; fax 301/634-7153; e-mail smergenhagen@faseb.org. Periodicals postage paid at Rockville, MD 20850, and at additional mailing offices.

Postmaster: Send address changes to The Plant Cell, American Society of Plant Biologists, 15501 Monona Drive, Rockville, MD 20855-2768. The online version of The Plant Cell is available at www.plantcell.org.

Permission to Reprint: Permission to make digital or hard copies of part or all of a work published in The Plant Cell is granted without fee for personal or classroom use provided that copies are not made or distributed for profit or commercial advantage and that copies bear the full citation and the following notice on the first page: “Copyright American Society of Plant Biologists.” For all other kinds of copying, request permission in writing from Nancy A. Winchester, Publications Director, ASPB headquarters.
19 (6)
Plant Cell 2007;19;1722a-2089

This information is current as of June 29, 2017

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>eTOCs</td>
<td>Sign up for eTOCs at: http://www.plantcell.org/cgi/alerts/ctmain</td>
</tr>
<tr>
<td>CiteTrack Alerts</td>
<td>Sign up for CiteTrack Alerts at: http://www.plantcell.org/cgi/alerts/ctmain</td>
</tr>
<tr>
<td>Subscription Information</td>
<td>Subscription Information for The Plant Cell and Plant Physiology is available at: http://www.aspb.org/publications/subscriptions.cfm</td>
</tr>
</tbody>
</table>