ON THE COVER

Auxin controls various processes in plant development, and one such example is lateral root (LR) formation, a major determinant of the pattern of the root system. It is not understood, however, how auxin regulates the downstream processes associated with LR formation, such as patterned cell divisions, tissue differentiation, and organ morphogenesis. Hirota et al. (pages 2156–2168) report the identification and analysis of the Arabidopsis PUCHI gene, which is essential for proper cell division pattern and morphogenesis in early stages of LR formation. PUCHI encodes a putative transcription factor of the AP2/EREBP class, and its expression is regulated by auxin through auxin-responsive cis-regulatory elements in its promoter. The cover shows a very early stage of LR formation, which is marked by a GFP-PUCHI fusion protein driven by its native promoter. In the puchi mutant, the proximal region of LR is highly expanded (bottom-left panel). The top-right panel shows an LR with normal shape in a puchi mutant plant complemented with the functional GFP-PUCHI fusion protein.

COMMENTARY

Translational Genomics for Bioenergy Production from Fuelstock Grasses: Maize as the Model Species
Carolyn J. Lawrence and Virginia Walbot

IN THIS ISSUE

GA Perception and Signal Transduction: Molecular Interactions of the GA Receptor GID1 with GA and the DELLA Protein SLR1 in Rice
Nancy A. Eckardt

IN BRIEF

Phosphatase AP2C1 Is a Key Component of MAPK Signaling in Arabidopsis
Dominant, Constitutively Active Phytochrome Mutants
Nancy A. Eckardt

RESEARCH ARTICLES

Natural Variation among Arabidopsis thaliana Accessions for Transcriptome Response to Exogenous Salicylic Acid
Hans van Leeuwen, Daniel J. Kliebenstein, Marilyn A.L. West, Kyunga Kim, Remco van Poecke, Fumiaki Katagiri, Richard W. Michelmore, Rebecca W. Doerge, and Dina A. St.Clair

A Functional Link between Rhythmic Changes in Chromatin Structure and the Arabidopsis Biological Clock
Mariano Perales and Paloma Más

Light-Independent Phytochrome Signaling Mediated by Dominant GAF Domain Tyrosine Mutants of Arabidopsis Phytochromes in Transgenic Plants
Yi-shin Su and J. Clark Lagarias
Molecular Interactions of a Soluble Gibberellin Receptor, GID1, with a Rice DELLA Protein, SLR1, and Gibberellin
Miyako Ueguchi-Tanaka, Masatoshi Nakajima, Etsuko Katoh, Hiroko Ohmiya, Kenji Asano, Shoko Saji, Xiang Hongyu, Motoyuki Ashikari, Hiromu Kitano, Isomaro Yamaguchi, and Makoto Matsuoka

Atsuko Hirota, Takehide Kato, Hidehiro Fukaki, Mitsuhiro Aida, and Masao Tatsaka

Multilevel Interactions between Ethylene and Auxin in Arabidopsis Roots
Anna N. Stepanova, Jeonga Yun, Alla V. Likhacheva, and Jose M. Alonso

Ethylene Upregulates Auxin Biosynthesis in Arabidopsis Seedlings to Enhance Inhibition of Root Cell Elongation
Ranjan Swarup, Paula Perry, Dik Hagenbeek, Dominique Van Der Straeten, Gerrit T.S. Beemster, Göran Sandberg, Rishikesh Bhalerao, Karin Ljung, and Malcolm J. Bennett

Ethylene Regulates Root Growth through Effects on Auxin Biosynthesis and Transport-Dependent Auxin Distribution
Kamil Růžička, Karin Ljung, Steffen Vanneste, Radka Podhorská, Tom Beeckman, Jiří Friml, and Eva Benkova

The PP2C-Type Phosphatase AP2C1, Which Negatively Regulates MPK4 and MPK6, Modulates Innate Immunity, Jasmonic Acid, and Ethylene Levels in Arabidopsis
Alois Schweighofer, Vaiva Kazanaviciute, Elisabeth Scheikl, Markus Teige, Robert Doczi, Heribert Hirt, Manfred Schwenger, Merijn Kant, Robert Schuurink, Felix Mauch, Antony Buchala, Francesca Cardinale, and Irute Meskiene

MYC2 Differentially Modulates Diverse Jasmonate-Dependent Functions in Arabidopsis

The TORMOZ Gene Encodes a Nucleolar Protein Required for Regulated Division Planes and Embryo Development in Arabidopsis
Megan E. Griffith, Ulrike Mayer, Arnaud Capron, Quy A. Ngo, Anandkumar Surendrarao, Regina McClinton, Gerd Jürgens, and Venkatesan Sundaresan

Functional Analysis of the Epidermal-Specific MYB Genes CAPRICE and WEREWOLF in Arabidopsis
Rumi Tominaga, Mineko Iwata, Kiyotaka Okada, and Takuji Wada

EDITORIAL BOARD
Editor
Richard A. Jorgensen
Coeditors
Sarah M. Assmann
Alice Barkan
Kathy Barton
David Baum
Sebastian Bednarek
James Birchler
Ulfa Bonas
Christopher Bowler
Xing Wang Deng
Rebecca Doerge
Mark Estelle
Pascal Genschik
Jean T. Greenberg
Thomas Guilfoyle
Peter Hepler
Ann Hirsch
Patricia Leon
William Lucas
Cathie Martin
Marjori Matske
Krishna K. Niyogi
Joseph Noel
Magnus Nordborg
Michael Palmgren
Markus Pauly
Scott C. Peck
Karen S. Schumaker
David Smyth
Uwe Sonnewald
Chris J. Staiger
Nicholas J. Talbot
Masamitsu Wada

Managing Editor
John Long
News and Reviews Editor
Nancy A. Eckardt
Science Editor
Vacant
Production Manager
Susan L. Entwistle
Manuscript Manager
Annette Kessler
Publications Director
Nancy A. Winchester
Publisher
American Society of Plant Biologists
Executive Director, Crispin Taylor

Editorial Office
15501 Monona Drive
Rockville, Maryland 20855-2768
Telephone: 301/251-0560, ext. 119
Fax: 301/279-2996
http://www.aspb.org

Online at www.plantcell.org
A Unique β1,3-Galactosyltransferase Is Indispensable for the Biosynthesis of N-Glycans Containing Lewis α Structures in Arabidopsis thaliana

Richard Strasser, Jayakumar Singh Bondili, Ulrike Vavra, Jennifer Schoberer, Barbara Svoboda, Josef Glössl, Renaud Léonard, Johannes Stadlmann, Friedrich Altmann, Herta Steinkellner, and Lukas Mach

An Ustilago maydis Gene Involved in H2O2 Detoxification Is Required for Virulence

Lázaro Molina and Regine Kahmann

Online version contains Web-only data.

Open Access articles can be viewed online without a subscription.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>eTOCs</td>
<td>Sign up for eTOCs at: http://www.plantcell.org/cgi/alerts/ctmain</td>
</tr>
<tr>
<td>CiteTrack Alerts</td>
<td>Sign up for CiteTrack Alerts at: http://www.plantcell.org/cgi/alerts/ctmain</td>
</tr>
<tr>
<td>Subscription Information</td>
<td>Subscription Information for The Plant Cell and Plant Physiology is available at: http://www.aspb.org/publications/subscriptions.cfm</td>
</tr>
</tbody>
</table>