The rice blast fungus *Magnaporthe grisea* is the most destructive pathogen of cultivated rice and infects more than 50 grass species, including wheat and barley. *M. grisea* infects its host by forming a specialized infection structure called the appressorium. Upon landing on a host leaf, a short germ tube emerges from the spore and attaches to the substrate, initiating appressorium formation. Turgor pressure generated within the appressorium drives an emerging penetration peg through the plant cuticle.

Skamnioti and Gurr (pages 2674–2689) present genetic evidence that the *M. grisea* virulence determinant *CUT2* is essential for germling morphogenesis and successful plant penetration. The *cut2* mutant displays anomalous morphogenesis, forms fewer penetration pegs, and is poorly pathogenic. These defects are restored by synthetic cutin monomers, cAMP and DAG, suggesting that Cut2 is an upstream activator of cAMP/PKA and DAG/PKC signaling pathways. The cover image shows *cut2* mutant germlings, which form near straight germ tubes with small baguette-shaped appressoria. This contrasts markedly with wild-type germlings, which form a single short germ tube with a dome-shaped appressorium.
MicroRNA-Mediated Regulation of Stomatal Development in *Arabidopsis* 2417
Claudia Kutter, Hanspeter Schöb, Michael Stadler, Frederick Meins, Jr., and Azeddine Si-Ammour

Auxin Synthesized by the YUCCA Flavin Monooxygenases Is Essential for Embryogenesis and Leaf Formation in *Arabidopsis* 2430
Youfa Cheng, Xinhua Dai, and Yunde Zhao

The *Arabidopsis* Transcription Factor MYB77 Modulates Auxin Signal Transduction 2440
Ryoung Shin, Adrien Y. Burch, Kari A. Huppert, Shiv B. Tiwari, Angus S. Murphy, Tom J. Guilfoyle, and Daniel P. Schachtman

N-Acylethanolamine Metabolism Interacts with Abscisic Acid Signaling in *Arabidopsis thaliana* Seedlings 2454

A Downstream Mediator in the Growth Repression Limb of the Jasmonate Pathway 2470
Yuanxin Yan, Stéphanie Stolz, Aurore Chéretat, Philippe Reymond, Marco Pagni, Lucie Dubugnon, and Edward E. Farmer

The *Arabidopsis* Transcription Factors GLABRA2 and MYB98 Positively Regulate a Battery of Synergid-Expressed Genes Encoding Filiform Apparatus–Localized Proteins 2557
Jayson A. Punwani, David S. Rabiger, and Gary N. Drews

The *Arabidopsis* Tomato-like Protein (Tomato-like) Prevents Abnormal Cell Wall Morphology in Tomato Cells 2569
David R. Holding, Marisa S. Otegui, Bailin Li, Robert B. Meeley, Thao Dam, Brenda G. Hunter, Rudolf Jung, and Brian A. Larkins

A Ribonuclease III Domain Protein Functions in Group II Intron Splicing in Maize Chloroplasts 2606
Kenneth P. Watkins, Tiffany S. Kroeger, Amy M. Cooke, Rosalind E. Williams-Carrier, Giulia Friso, Susan E. Belcher, Klaas J. van Wijk, and Alice Barkan
Cell-Type Specificity of the Expression of Os BOR1, a Rice Efflux Boron Transporter Gene, Is Regulated in Response to Boron Availability for Efficient Boron Uptake and Xylem Loading
Yuko Nakagawa, Hideki Hanaoka, Masaharu Kobayashi, Kazumaru Miyoshi, Kyoko Miwa, and Toru Fujiwara

The Organization of High-Affinity Ammonium Uptake in Arabidopsis Roots Depends on the Spatial Arrangement and Biochemical Properties of AMT1-Type Transporters
Lixing Yuan, Dominique Loqué, Soichi Kojima, Sabine Rauch, Keiki Ishiyama, Eri Inoue, Hideki Takahashi, and Nicolas von Wirén

Thiol-Based Regulation of Redox-Active Glutamate-Cysteine Ligase from Arabidopsis thaliana
Leslie M. Hicks, Rebecca E. Cahoon, Eric R. Bonner, Rebecca S. Rivard, Jeanne Sheffield, and Joseph M. Jez

UV-B Promotes Rapid Nuclear Translocation of the Arabidopsis UV-B–Specific Signaling Component UVR8 and Activates Its Function in the Nucleus
Eirini Kaiserli and Gareth I. Jenkins

Magnaporthe grisea Cutinase2 Mediates Appressorium Differentiation and Host Penetration and Is Required for Full Virulence
Pari Skamnioti and Sarah J. Gurr

CORRECTIONS


Online version contains Web-only data.
Open Access articles can be viewed online without a subscription.