ON THE COVER

The rice blast fungus Magnaporthe grisea is the most destructive pathogen of cultivated rice and infects more than 50 grass species, including wheat and barley. M. grisea infects its host by forming a specialized infection structure called the appressorium. Upon landing on a host leaf, a short germ tube emerges from the spore and attaches to the substrate, initiating appressorium formation. Turgor pressure generated within the appressorium drives an emerging penetration peg through the plant cuticle. Skamnioti and Gurr (pages 2674–2689) present genetic evidence that the M. grisea virulence determinant CUT2 is essential for germling morphogenesis and successful plant penetration. The cut2 mutant displays anomalous morphogenesis, forms fewer penetration pegs, and is poorly pathogenic. These defects are restored by synthetic cutin monomers, cAMP and DAG, suggesting that Cut2 is an upstream activator of cAMP/PKA and DAG/PKC signaling pathways. The cover image shows cut2 mutant germlings, which form near straight germ tubes with small baguette-shaped appressoria. This contrasts markedly with wild-type germlings, which form a single short germ tube with a dome-shaped appressorium.

COMMENTARY

Sowing the Seeds of Dialogue: Public Engagement through Plant Science 2311
David Lally, Eric Brooks, Frans E. Tax, and Erin L. Dolan

IN THIS ISSUE

Elucidating the Function of Synergid Cells: A Regulatory Role for MYB98 2320
Nancy A. Eckardt

IN BRIEF

Apical Bud Formation and Dormancy Induction in Poplar 2322
Adaptive Evolution among Plant Pathogenic Oomycete RXLR Effector Genes
Nancy A. Eckardt

CURRENT PERSPECTIVE ESSAY

Engineered Plant Minichromosomes: A Resurrection of B Chromosomes? 2323
Andreas Houben and Ingo Schubert

RESEARCH ARTICLES

Large-Scale, Lineage-Specific Expansion of a Bric-a-Brac/Tramtrack/Broad Complex Ubiquitin-Ligase Gene Family in Rice [1]
Derek J. Gingerich, Kousuke Hanada, Shin-Han Shiu, and Richard D. Vierstra

Adaptive Evolution Has Targeted the C-Terminal Domain of the RXLR Effectors of Plant Pathogenic Oomycetes [1]
Joe Win, William Morgan, Jorunn Bos, Ksenia V. Krasileva, Liliana M. Cano, Angela Chaparro-Garcia, Randa Ammar, Brian J. Staskawicz, and Sophien Kamoun

A Molecular Timetable for Apical Bud Formation and Dormancy Induction in Poplar [1]
Tom Rutting, Matthias Arend, Kris Morreel, Véronique Storme, Stephane Rombauts, Jörg Fromm, Rishikesh P. Balerao, Wout Boerjan, and Antje Rohde

Allele-Specific Expression Patterns Reveal Biases and Embryo-Specific Parent-of-Origin Effects in Hybrid Maize [1]
Nathan M. Springer and Robert M. Stupar

A WD40 Domain Cyclophilin Interacts with Histone H3 and Functions in Gene Repression and Organogenesis in Arabidopsis [1]
Hong Li, Zengyong He, Guihua Lu, Sung Chul Lee, Jose Alonso, Joseph R. Ecker, and Sheng Luan

ON THE COVER

The rice blast fungus Magnaporthe grisea is the most destructive pathogen of cultivated rice and infects more than 50 grass species, including wheat and barley. M. grisea infects its host by forming a specialized infection structure called the appressorium. Upon landing on a host leaf, a short germ tube emerges from the spore and attaches to the substrate, initiating appressorium formation. Turgor pressure generated within the appressorium drives an emerging penetration peg through the plant cuticle. Skamnioti and Gurr (pages 2674–2689) present genetic evidence that the M. grisea virulence determinant CUT2 is essential for germling morphogenesis and successful plant penetration. The cut2 mutant displays anomalous morphogenesis, forms fewer penetration pegs, and is poorly pathogenic. These defects are restored by synthetic cutin monomers, cAMP and DAG, suggesting that Cut2 is an upstream activator of cAMP/PKA and DAG/PKC signaling pathways. The cover image shows cut2 mutant germlings, which form near straight germ tubes with small baguette-shaped appressoria. This contrasts markedly with wild-type germlings, which form a single short germ tube with a dome-shaped appressorium.
MicroRNA-Mediated Regulation of Stomatal Development in *Arabidopsis*
Claudia Kutter, Hanspeter Schöb, Michael Stadler, Frederick Meins, Jr., and Azeddine Si-Ammour

Auxin Synthesized by the YUCCA Flavin Monooxygenases Is Essential for Embryogenesis and Leaf Formation in *Arabidopsis*
Youfa Cheng, Xinhua Dai, and Yunde Zhao

The *Arabidopsis* Transcription Factor MYB77 Modulates Auxin Signal Transduction
Ryoung Shin, Adrien Y. Burch, Kari A. Huppert, Shiv B. Tiwari, Angus S. Murphy, Tom J. Guilfoyle, and Daniel P. Schachtman

N-Acylethanolamine Metabolism Interacts with Abscisic Acid Signaling in *Arabidopsis thaliana* Seedlings

A Downstream Mediator in the Growth Repression Limb of the Jasmonate Pathway
Yuanxin Yan, Stéphanie Stolz, Aurore Chélatel, Philippe Reymond, Marco Pagni, Lucie Dubugnon, and Edward E. Farmer

The SnRK1A Protein Kinase Plays a Key Role in Sugar Signaling during Germination and Seedling Growth of Rice

Signaling from an Altered Cell Wall to the Nucleus Mediates Sugar-Responsive Growth and Development in *Arabidopsis thaliana*
Yunhai Li, Caroline Smith, Fiona Corke, Leiying Zheng, Zara Merali, Peter Ryden, Paul Derbyshire, Keith Waldron, and Michael W. Bevan

Targeted Degradation of PSEUDO-RESPONSE REGULATORs by an SCFZTL Complex Regulates Clock Function and Photomorphogenesis in *Arabidopsis thaliana*
Takatoshi Kiba, Rossana Henrques, Hitoshi Sakakibara, and Nam-Hai Chua

Arabidopsis TRANSPARENT TESTA GLABRA2 Is Directly Regulated by R2R3 MYB Transcription Factors and Is Involved in Regulation of GLABRA2 Transcription in Epidermal Differentiation
Tetsuya Ishida, Sayoko Hattori, Ryosuke Sano, Kayoko Inoue, Yumiko Shirano, Hiroaki Hayashi, Daisuke Shibata, Shusei Sato, Tomohiko Kato, Satoshi Tabata, Kiyotaka Okada, and Takui Wada

Genetic and Molecular Interactions between BELL1 and MADS Box Factors Support Ovule Development in *Arabidopsis*
Vittoria Brambilla, Raffaella Battaglia, Monica Colombo, Simona Masiero, Stefano Bencivenga, Martin M. Kater, and Lucia Colombo

MYB98 Positively Regulates a Battery of Synergid-Expressed Genes Encoding Filiform Apparatus–Localized Proteins
Jayson A. Punwani, David S. Rabiger, and Gary N. Drews

The Maize *Floury1* Gene Encodes a Novel Endoplasmic Reticulum Protein Involved in Zein Protein Body Formation
David R. Holding, Marisa S. Otegui, Bailin Li, Robert B. Meeley, Thao Dam, Brenda G. Hunter, Rudolf Jung, and Brian A. Larkins

A Germ Cell–Specific Gene of the ARGONAUTE Family Is Essential for the Progression of Premeiotic Mitosis and Meiosis during Sporogenesis in Rice
Ken-Ichi Nonomura, Akane Morohoshi, Mutsuko Nakano, Mitsugu Eigiuchi, Akio Miyao, Hirochiko Hirochika, and Nori Kurata

Two *Arabidopsis* Phragmoplast-Associated Kinesins Play a Critical Role in Cytokinesis during Male Gametogenesis
Yuh-Ru Julie Lee, Yan Li, and Bo Liu

A Ribonuclease III Domain Protein Functions in Group II Intron Splicing in Maize Chloroplasts
Kenneth P. Watkins, Tiffany S. Kroeger, Amy M. Cooke, Rosalind E. Williams-Carrier, Giulia Friso, Susan E. Belcher, Klaas J. van Wijk, and Alice Barkan
Cell-Type Specificity of the Expression of Os BOR1, a Rice Efflux Boron Transporter Gene, Is Regulated in Response to Boron Availability for Efficient Boron Uptake and Xylem Loading

Yuko Nakagawa, Hideki Hanaoka, Masaharu Kobayashi, Kazumaru Miyoshi, Kyoko Miwa, and Toru Fujiwara

The Organization of High-Affinity Ammonium Uptake in Arabidopsis Roots Depends on the Spatial Arrangement and Biochemical Properties of AMT1-Type Transporters

Lixing Yuan, Dominique Loqué, Soichi Kojima, Sabine Rauch, Keiki Ishiyama, Eri Inoue, Hideki Takahashi, and Nicolaus von Wirén

Thiol-Based Regulation of Redox-Active Glutamate-Cysteine Ligase from Arabidopsis thaliana

Leslie M. Hicks, Rebecca E. Cahoon, Eric R. Bonner, Rebecca S. Rivard, Jeanne Sheffield, and Joseph M. Jez

UV-B Promotes Rapid Nuclear Translocation of the Arabidopsis UV-B–Specific Signaling Component UVR8 and Activates Its Function in the Nucleus

Eirini Kaiserli and Gareth I. Jenkins

Magnaporthe grisea Cutinase2 Mediates Appressorium Differentiation and Host Penetration and Is Required for Full Virulence

Pari Skamnioti and Sarah J. Gurr

CORRECTIONS

© 2007 American Society of Plant Biologists. All rights reserved. Printed on acid-free paper effective with Volume 1, Number 1, January 1989. Printed in the United States of America.

Online version contains Web-only data.

Open Access articles can be viewed online without a subscription.