Of Fingers, Zippers, and Boxes

Wilhelm Gruissem
Department of Plant Biology, University of California, Berkeley, California 94720

IN THIS ISSUE

Transcription in eukaryotic cells is controlled by a large number of trans-acting regulatory proteins, most of which recognize cis-acting DNA sequences 5' to the transcription start site. In several cases, it has been demonstrated that expression and specific DNA binding of transcriptional regulators in the context of a developmental program control the temporal and spatial expression of genes. Transcriptional regulators are also part of intracellular signal transduction chains by which cells integrate environmental and physiological cues to change the transcriptional status of genes. As an example, light is one of the most widely studied signals in plants, and several proteins have been identified that bind to regulatory DNA sequences in the promoter regions of light-responsive genes (Gilmartin et al., 1990). The biochemical pathways and the genes downstream of the transcriptional regulators, however, are still largely unknown. The isolation of transcriptional regulators and their genes and the identification of their DNA binding sites are often the important first steps in the genetic, biochemical, and molecular dissection of signal transduction chains. In this respect, plants are no exception, and the efficient transformation systems available for many plants are, in fact, powerful tools that allow the rapid and detailed dissection of regulatory promoter elements.

Two reports in this issue analyze promoter regions for genes that have complex developmental and organ-specific expression patterns. Ohl et al. (pages 837–848) describe the isolation and partial characterization of a gene for phenylalanine ammonia-lyase (PAL) from Arabidopsis. This enzyme catalyzes the first step in the biosynthesis of phenylpropanoids, which are synthesized in response to the plant developmental program, pathogen attack, and UV and mechanical stress. In Arabidopsis, PAL is encoded by a multigene family of comparable size to those from bean, parsley, and rice, supporting the hypothesis that individual PAL genes may encode variant products with distinct functional specializations. Expression of β-glucuronidase activity from the PAL promoter in transgenic Arabidopsis responds to developmental cues, wounding, and light. This expression pattern is similar to the response of the bean PAL promoter in transgenic tobacco (Bevan et al., 1989; Liang et al., 1989) and suggests that regulatory elements within the promoter regions are conserved in a wide range of plants. Consistent with this is the identification in Ohl et al. (pages 837–848) and Lois et al. (1989) of DNA sequence motifs that are conserved in the Arabidopsis and parsley PAL promoter regions and that are present in the promoter regions of other genes for phenylpropanoid pathway enzymes as well.

The gene for 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in petunia is expressed in different organs at different stages of development. The enzyme catalyzes an essential step in the shikimate pathway and has received much attention as a target for the herbicide glyphosate. Following their initial characterization of the EPSPS gene promoter (Benfey and Chua, 1989), Benfey et al. (pages 849–856) now provide a detailed analysis of 5' sequences that control the transcription of the EPSPS gene in flowers and seedlings. The highlight of their work is the demonstration of functional redundancy down to the level of cell specificity for two 400-bp to 500-bp DNA fragments that are located approximately 0.8 kb and 1.2 kb 5' to the transcription start site. As a bonus, they use the EPSPS promoter in combination with the maize A1 gene (for dihydroquercetin 4-reductase) to alter the flower color in two petunia mutant lines unable to accumulate high levels of anthocyanin pigments, further demonstrating the temporal and spatial specificity of this promoter.

At the protein end, transcriptional regulators and DNA-binding proteins are now being identified and isolated at an ever-increasing rate. Based on their DNA binding domains, these factors can be grouped into different classes. Among these are proteins with helix-loop-helix, zinc finger, and leucine zipper motifs in their DNA binding domains. Some of the factors with transcriptional regulatory properties are related to oncoproteins, nuclear hormonal receptors, or homeotic proteins. The recent characterization of the genes for proteins that cause the homeotic leaf phenotype "knotted" in maize (reported by S. Hake at the 32nd Maize Genetics Meeting), and the homeotic flower phenotypes "deficiens" in Antirrhinum majus (Sommer et al., 1990) and "agamous" in Arabidopsis thaliana (Yanofsky et al., 1990) add to this list three potential transcriptional regulators whose correct functions have direct developmental consequences.

Two reports in this issue expand the list of plant transcriptional regulators that belong to the groups of DNA-binding proteins with zinc finger and leucine zipper motifs. Lam et al. (pages 857–866) have isolated the gene for a tobacco nuclear factor, 3AF1, which binds to an AT-rich
sequence present at the −45 region (Box VI) of the pea
rbcS-3A promoter. Box VI, when placed upstream of a
truncated cauliflower mosaic virus 3SS promoter, functions
as a constitutive element that does not respond to light.
The protein, encoded by the gene isolated from a tobacco
expression library using a Box VI tetramer as the probe,
has interesting features, among which are histidines and
cysteines in conserved positions relative to other known
zinc finger proteins. The conserved amino acids, together
with the sensitivity of 3AF1 expressed in Escherichia coli
to the metal chelator 1,10-phenanthroline, make 3AF1 a
candidate for this class of regulatory DNA-binding proteins.

Singh et al. (pages 891–903) report the isolation and
characterization of a maize ocs enhancer binding protein,
OCSBF-1, which may be related to the ocs-binding plant
factor OCSTF previously identified by Singh et al. (1989)
and Tokuhisa et al. (1990). The ocs-element is found in
the promoter region of several Agrobacterium T-DNA
genes, as well as in the promoter region of certain plant
DNA viruses. OCSBF-1 has 2 leucines and a valine in
conserved positions adjacent to a basic region. This is
typical of a leucine zipper motif, a feature that OCSBF-1
shares with animal and yeast transcriptional regulators
such as Jun, Fos, CREB, or GCN4. Recently, Guiltinan et
al. (1990) isolated a wheat protein (EMBP-1) that recog-
nizes an abscisic acid response element and that also
contains a leucine zipper binding motif. Both OCSBF-1
and EMBP-1 now join the group of previously identified
proteins, including the wheat factor HBP-1 (Tabata et al.,
1989), the maize factor(s) O2 (Hartings et al., 1989;
Schmidt et al., 1990), and the tobacco factors TGA1a and
TGA1b (Katagiri et al., 1989), all of which have amino acid
homologies in the basic region and part of the leucine
zipper motif. These proteins are of particular interest be-
cause they may represent a group of plant transcriptional
regulators that, similar to the Fos-Jun and ATF-CREB
families of proteins, may act by way of conserved DNA
binding domains and diverged effector domains. This may
allow related transcriptional regulators to act through the
same or similar DNA binding sites and provide the cell,
based on the different effector domains, with increased
flexibility and sensitivity to adjust transcriptional activity in
response to a range of biochemical and environmental
cues. Clearly, the reports in this issue are part of
exciting discoveries to unravel transcriptional regulation in
plants.

REFERENCES

Benfey, P.N., and Chua, N.-H. (1989). Regulated genes in trans-

Bevan, M., Shuffletbottom, D., Edwards, K., Jefferson, R., and
ylalanine ammonia-lyase promoter in transgenic plants. EMBO
J. 8, 1899–1906.

Gilmartin, P.M., Sarokin, L., Memelink, J., and Chua, N.-H.
369–378.

A plant leucine zipper protein that recognizes an abscisic acid

Hartings, H., Maddaloni, M., Lazzaroni, N., Di Fonzo, N., Motto,
which regulates zein deposition in maize endosperma encodes
a protein with structural homologies to transcriptional activa-
tors. EMBO J. 8, 2795–2801.

Katagiri, F., Lam, E., and Chua, N.-H. (1989). Two tobacco DNA-
binding proteins with homology to the nuclear factor CREB.

(1989). Developmental and environmental regulation of a phen-
ylalanine ammonia-lyase-β-glucuronidase gene fusion in trans-

phenylalanine ammonia-lyase gene from parsley: Structure, reg-
ulation, and identification of elicitor and light-responsive cis-
acting elements. EMBO J. 8, 1641–1648.

Maize regulatory gene opaque-2 encodes a protein with a
“leucine-zipper” motif that binds to zein RNA. Proc. Natl. Acad.
Sci. USA 87, 46–50.

Singh, K., Tokuhisa, J.G., Dennis, E.S., and Peacock, W.J.
(1989). Saturation mutagenesis of the octopine synthase en-
hancer: Correlation of mutant phenotypes with binding of a

Sommer, H., Beltran, J.P., Huljser, P., Pape, H., Lönning, W.E.,
homeotic gene involved in the control of flower morphogenesis in
Antirnhamus majus: The protein shows homology to transcrip-
tional factors. EMBO J. 9, 603–613.

Tabata, T., Takase, H., Tsakayama, S., Mikami, K., Nakatsuka,
A protein that binds to a cis-acting element of wheat histone
genes has a leucine zipper motif. Science 245, 965–967.

Tokuhisa, J.G., Singh, K., Dennis, E.S., and Peacock, W.J.
(1990). A DNA-binding protein factor recognizes two binding
domains within the octopine synthase enhancer element. Plant

Yanoonsky, M.F., Ma, H., Bowman, J.L., Dews, G.N., Feldmann,
the Arabidopsis homeotic gene agamous resembles transcrip-