The Plastidial 2-C-Methyl-\(\text{D}\)-Erythritol 4-Phosphate Pathway Provides the Isoprenyl Moiety for Protein Geranylgeranylation in Tobacco BY-2 Cells

Esther Gerber, Andrée Hemmerlin, Michael Hartmann, Dimitri Heintz, Marie-Andrée Hartmann, Jérôme Mutterer, Manuel Rodriguez-Concepción, Albert Boronat, Alain Van Dorselaer, Michel Rohmer, Dring N. Crowell, and Thomas J. Bach

INTRODUCTION

Protein farnesylation and geranylgeranylation are important posttranslational modifications in eukaryotic cells. We visualized in transformed Nicotiana tabacum Bright Yellow-2 (BY-2) cells the geranylgeranylation and plasma membrane localization of GFP-BD-CVIL, which consists of green fluorescent protein (GFP) fused to the C-terminal polybasic domain (BD) and CVIL isoprenylation motif from the Oryza sativa calmodulin, CaM61. Treatment with fosmidomycin (Fos) or oxoclomazone (OC), inhibitors of the plastidial 2-C-methyl-\(\text{D}\)-erythritol 4-phosphate (MEP) pathway, caused mislocalization of the protein to the nucleus, whereas treatment with mevinolin, an inhibitor of the cytosolic mevalonate pathway, did not. The nuclear localization of GFP-BD-CVIL in the presence of MEP pathway inhibitors was completely reversed by all-trans-geranylgeraniol (GGOl). Furthermore, 1-deoxy-\(\text{D}\)-xylose (DX) reversed the effects of OC, but not Fos, consistent with the hypothesis that OC blocks 1-deoxy-\(\text{D}\)-xylose 5-phosphate synthesis, whereas Fos inhibits its conversion to 2-C-methyl-\(\text{D}\)-erythritol 4-phosphate. By contrast, GGol and DX did not rescue the nuclear mislocalization of GFP-BD-CVIL in the presence of a protein geranylgeranyltransferase type 1 inhibitor. Thus, the MEP pathway has an essential role in geranylgeranyl diphosphate (GGPP) biosynthesis and protein geranylgeranylation in BY-2 cells. GFP-BD-CVIL is a versatile tool for identifying pharmaceuticals and herbicides that interfere either with GGPP biosynthesis or with protein geranylgeranylation.

1 These authors contributed equally to this work.
2 Current address: Institut National de la Santé et de la Recherche Médicale U571, Hôpital Necker, Laboratoire RADMAN, F-75015 Paris, France.
3 Current address: Departamento de Bioquímica i Biologia Molecular, Universitat de Barcelona, E-08028 Barcelona, Spain.
4 Current address: Université Louis Pasteur/Centre National de la Recherche Scientifique, Laboratoire de Spectrométrie de Masse Bio-Organique, Institut Pluridisciplinaire Hubert Curien, LC4-Unité Mixte de Recherche 7178, Ecole Européenne de Chimie, Polymères et Matériaux, F-67087 Strasbourg, France.
5 Address correspondence to crowdrin@isu.edu or thomas.bach@bota-ulp.u-strasbg.fr.
biosynthetic pathways: a cytosolic MVA pathway and a plastidial
et al., 2002), higher plants possess two distinct isoprenoid
and animal cells, which rely exclusively on the cytosolic and
isoprenylation have been controversial because, unlike yeast
farnesylated and geranylgeranylated plant proteins, the biosyn-
and Gruissem, 2006).

Despite the insights gained in recent years into the functions of
farnesylated and geranylgeranylated plant proteins, the biosyn-
thetic origins of the FPP and GGPP used by plant cells for protein
isoprenylation have been controversial because, unlike yeast
and animal cells, which rely exclusively on the cytosolic and
putatively peroxisomal mevalonate (MVA) pathway (Kovacs et al.,
2002), higher plants possess two distinct isoprenoid biosynthetic pathways: a cytosolic MVA pathway and a plastidial 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway (cf. Rohmer, 1999; Lichtenthaler, 2000; Eisenreich et al., 2001, 2004; Rodríguez-Concepción and Boronat, 2002; Kuzuyama and Seto, 2003; Bouvier et al., 2005). In two independent studies, tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells and spinach (Spinacia oleracea) seedlings were incubated with radiolabeled MVA, and labeling of proteins was observed (Randall et al., 1993; Shipton et al., 1995). Most of these proteins were found to be in the plasma membrane or nuclear/mitochondrial fractions. However, this observation does not prove that the MVA pathway is solely responsible for the biosynthesis of the isoprenyl diphosphates used by plant cells for protein isoprenylation. Indeed, incubation of BY-2 cells in the presence of [2-14C]1-deoxy-o-
xyulose (DX), the dephosphorylated form of the first product of
the MEP pathway, resulted in significant labeling of low molecular
weight proteins (Hemmerlin et al., 2003). The assumption that
C15 and C30 isoprenoids are derived from the MVA pathway
and C20, C30, and C40 isoprenoids are derived from the MEP
pathway (cf. Rodríguez-Concepción and Boronat, 2002) sug-

RESULTS

Cloning of the C-Terminal Moiety of Rice Calmodulin (CaM61) and Construction of GFP Fusion Proteins

We have shown that BY-2 cells are useful for studying regulatory interactions between isoprenoid biosynthesis and fundamental
processes like cell division and growth (Hemmerlin and Bach, 1998, 2000; Hemmerlin et al., 2000) and for analyzing the incorporation of isoprenoid precursors and intermediates into various end products (Disch et al., 1998; Hartmann and Bach, 2001; Hoefﬂer et al., 2002; Hemmerlin et al., 2003). The latter is due to the extremely high productivity of BY-2 cell suspensions, which have a cell division cycle of only 14 h (Nagata et al., 1992). This short cell division cycle guarantees high metabolic ﬂux rates through the MVA and MEP pathways to end products (i.e., sterols, isoprenylated proteins, etc.). To further these studies, we created plasmids expressing GFP fused to the C-terminal domain of the rice calmodulin CaM61 (accession number U37936). In contrast with soluble calmodulins, which are highly conserved proteins in eukaryotes, including humans, Drosophila, and Arabidopsis, CaM61 from rice, like its homolog from petunia (CaM53) (Rodrı́guez-Concepcio´n et al., 1999), contains a C-terminal domain with a series of basic amino acid residues (BD) followed by a CaaX isoprenylation motif (CVIL). This tetrapeptide sequence is predicted to be a substrate for PGGT 1. Using mRNA from 4-d-old rice seedlings, we ampliﬁed a cDNA by RT-PCR encoding this CaM61 C-terminal domain (comprising 45 amino acid residues). The GFP coding sequence was then fused in frame to the 5’ end of the CaM61 C-terminal domain, and the resulting GFP fusion construct was integrated into the vector pTA7001 (Aoyama and Chua, 1997), where it was placed under the control of a promoter that is gradually inducible by dexamethasone. The corresponding plasmid, pTA-GFP-BD-CVIL, was used for stable transformation of BY-2 cells by Agrobacterium tumefaciens-mediated T-DNA transfer according to standard protocols. An additional GFP fusion protein was generated by site-directed mutagenesis in which the Cys of the CVIL motif was replaced by Ser (GFP-BD-SVIL). In addition to a construct

Figure 1. Localization of GFP Fusion Proteins to Subcellular Structures in Transformed BY-2 Cells.
Stably transformed BY-2 cells in the stationary phase were diluted into fresh medium and treated under standard conditions, which are described in Results. Bars = 10 µm.

(A) GFP, fused at its C terminus to the C terminus of rice calmodulin CaM61, which bears a basic domain (BD) and a CVIL geranylgeranylation motif (GFP-BD-CVIL). The resulting ﬂuorescence is exclusively localized to the periphery of the cell.

(B) The same cell as in (A) in white light mode, indicating structural details, especially the position of the nucleus.

(C) Expression of a fusion protein that cannot be geranylgeranylated due to the replacement of the Cys residue in the isoprenyltransferase recognition motif by Ser (GFP-BD-SVIL). This substitution causes mislocalization of GFP-BD-CVIL to the nucleoplasm and nucleolus.

(D) The same cell as in (C) in white light phase contrast mode, indicating the localization of the nucleus and the nucleolus.

(E) Expression of GFP alone, with GFP ﬂuorescence in cytoplasmic strands and nucleoplasm, but not the nucleolus.

(F) The same cell as in (E) in white light mode.

(G) A cell in the process of division, with accumulation of GFP-BD-CVIL in the newly forming cell plate.

(H) The same cell as in (G) in white light mode.
expressing GFP alone, this GFP construct served as a non-geranylgeranylated control.

Under standard conditions, expression of proteins was induced by the addition of 10 μM (final concentration) dexamethasone, and, after 15 h, the transformed BY-2 cells were subjected to microscopic analysis. These conditions were found to be optimal for the experiments described in this article. When the GFP-BD-CVIL fusion protein was expressed and isoprenylated in vivo, it was strictly localized to the periphery of BY-2 cells (Figures 1A and 1B). This was in sharp contrast with the subcellular localization of GFP-BD-SVIL, which cannot be isoprenylated in vivo and resulted in green fluorescence in the nucleoplasm and, more intensely, in the nucleolus (Figures 1C and 1D). This pattern of fluorescence was also clearly distinguishable from the localization of unmodified GFP, which predominantly accumulated in the cytosol and in the nucleoplasm, but not in the nucleolus (Figures 1E and 1F). In initial experiments, we verified that expression of GFP and GFP fusions was not toxic to BY-2 cells. Indeed, cells expressing GFP-BD-CVIL were observed in the process of mitosis, and, during cytokinesis, the newly formed cell plate appeared to be labeled by the geranylgeranylated GFP fusion protein (Figures 1G and 1H). To test the hypothesis that the peripheral localization of GFP-BD-CVIL was exclusively due to the integration of the protein into the plasma membrane, we used two approaches: first, by colocalization of GFP fluorescence with the red fluorescent dye FM4-64 (6.7 μg/mL), which has been described as a specific stain for the plasma membrane (Bolte et al., 2004); and, second, by inducing plasmolysis with 0.23 M mannitol in the presence of FM4-64. The high osmoticum led to a detachment of the plasma membrane from the cell wall and maintained the colocalization of GFP-BD-CVIL and FM4-64 (Figure 2). These experiments confirmed the prediction that the C-terminus of rice CaM61 is sufficient, as in the case of petunia CaM53 (Rodrı´guez-Concepcio´ n et al., 1999), to target GFP to the plasma membrane.

In Vivo Inhibition of GFP-BD-CVIL Geranylgeranylation

The experiments described above provided a tool for visualizing in transformed BY-2 cells the impact of geranylgeranylation, or lack of geranylgeranylation, on GFP-BD-CVIL protein localization. Bearing in mind the unresolved question of the biochemical origin(s) of the GGPP used for protein geranylgeranylation, we made use of inhibitors that either block the MVA pathway (mevinolin [MV]) or the MEP pathway (fosmidomycin [Fos]) (Hemmerlin et al., 2003). Of course, it was necessary to establish the best conditions, such as time of incubation in the presence of inhibitors and time of dexamethasone induction of gene expression. The standard protocol thus established was as follows: 7-d-old cells in the stationary phase of cell culture were diluted fivefold into fresh medium, and 3 mL aliquots were incubated for 3 h in the presence of inhibitors, followed by a 15-h induction of GFP-BD-CVIL expression with 10 μM dexamethasone.

Figure 2. Localization of GFP-BD-CVIL to the Plasma Membrane in BY-2 Cells.

GFP-BD-CVIL expression was induced for 15 h with 10 μM dexamethasone before treatment with the fluorescent marker FM4-64 (6.7 μg/mL). The green channel was set for detection of GFP (top panel) and the red channel for detection of the PM marker FM4-64 (middle panel). Merged images are shown in yellow and indicate colocalization of GFP-BD-CVIL and FM4-64 (bottom panel). Bars = 10 μm.

(A) In the absence of 0.23 M D-mannitol.
(B) In the presence of 0.23 M D-mannitol, which induces plasmolysis. The images show single optical sections through the center of the cell, including the nucleus.

Figure 3. Quantitative Analyses of GFP-BD-CVIL Localization in BY-2 Cells Treated with MEP and MVA Pathway Inhibitors.

Percentage of GFP-BD-CVIL localized to the plasma membrane and nucleus/nucleolus in the presence of MV (5 μM), Fos (40 μM), or OC (40 μM). Black bars: percentage of cells showing plasma membrane localization. Gray bars: percentage of cells with partial or complete delocalization to the nucleus/nucleolus. The number of cells analyzed is indicated under each column.
When BY-2 cells expressing GFP-BD-CVIL were treated for 3 h with 5 mM MV prior to dexamethasone induction, a concentration known to completely abolish cell division (Hemmerlin and Böger, 1998) and presumed to deplete cells of MVA and MVA-derived pathway intermediates, there was little or no effect on the predominant localization of green fluorescence at the cell periphery (Figure 3; see Supplemental Table 1 online). Previous observations (Hemmerlin et al., 2003) suggested the possibility that, within a time scale of <15 h after induction of GFP-BD-CVIL expression, export of MEP-derived compounds to the cytosol might permit geranylgeranylation of GFP-BD-CVIL. To test this hypothesis, transformed BY-2 cells were also treated with Fos at 40 mM, which resulted in a dramatic translocation of GFP-BD-CVIL to the nucleus, with traces of fluorescence localized to the plasma membrane (Figure 3; see Supplemental Table 1 online). Application of both inhibitors completely abolished integration of GFP-BD-CVIL into the plasma membrane, suggesting that some crosstalk between the pathways must exist, as demonstrated for the biosynthesis of diterpenoid ginkgolides (Schwarz and Arigoni, 1999) and, more recently, for the biosynthesis of dolichols (Skorupinska-Tudek et al., 2008). Nevertheless, the dominant contribution of the MEP pathway to the synthesis of the geranylgeranyl moiety for isoprenylation of the GFP-BD-CVIL reporter protein was clear.

To support the hypothesis that plastidial isoprenoid synthesis is required for the geranylgeranylation of GFP-BD-CVIL, cells were treated with oxoclomazone (OC; also referred to as FMC 57020 or dimethazone). The latter was recognized as blocking the MEP pathway at a step before the formation of phytoene (Sandmann and Böger, 1989; Lange et al., 2001). Thus, OC may inhibit an enzyme in the MEP pathway that catalyzes a reaction preceding isopentenyl diphosphate (IPP) and dimethylallyl diphosphate synthesis, such as 1-deoxy-D-xylulose 5-phosphate synthase (DXS) (Müller et al., 2000; Zeidler et al., 2000). In our system, the compound exerted an effect like, but greater than, Fos (Figure 3; see Supplemental Table 1 online), thereby validating the use of transformed BY-2 cells to visualize the impact of well-characterized, as well as uncharacterized, inhibitors that affect either the plastidial (and/or cytosolic) synthesis of isoprenyl diphosphates necessary for isoprenylation of Caax proteins or act directly on the process of protein isoprenylation.

Chemical Complementation

To confirm the significance of the observations described above, we chemically complemented the Fos inhibition of GFP-BD-CVIL plasma membrane localization (alone and in combination with MV) with isoprenoid intermediates and end products in their dephosphorylated forms (i.e., to facilitate uptake into cells). Accordingly, geraniol (Gol), farnesol (Fol), and geranylgeraniol (GGol), each at 20 mM, and MVA, at 3 mM, were added at the time

![Figure 4. Chemical Complementation of Inhibitor-Induced GFP-BD-CVIL Delocalization from the Plasma Membrane to the Nucleus with MVA (3 mM) or Prenols (20 mM).](image)

Black bars: percentage of cells showing plasma membrane localization. Gray bars: percentage of cells with partial or complete delocalization to the nucleus/nucleolus. The number of cells analyzed is indicated under each column. Fos40, Fos (40 μM); MV5, MV (5 μM); Gol20, geraniol (20 μM); Fol20, farnesol (20 μM); GGol20, geranylgeraniol (20 μM); control, transformed cells without any inhibitor treatment, displaying ~99% plasma membrane localization.

GFP fusion proteins were expressed in *E. coli* and tested for in vitro isoprenylation using cell-free extracts from 3-d-old BY-2 cells as a source of protein isoprenyltransferases and [3H]-FPP or [3H]-GGPP as isoprenyl diphosphate substrates. For comparison, Ras fusion proteins were also isoprenylated in vitro. Ras-CAIM is recognized by PFT, whereas Ras-CAIL is recognized by PGGT 1. By contrast, Ras-SVLS is not recognized by any known protein isoprenyltransferase. GFP-BD-CVIL was predicted to be a substrate of PGGT 1, whereas GFP-CVIM was predicted to be a substrate of PFT. GFP-SVIL served as a control protein that cannot be isoprenylated. The positions of GFP-Caax and Ras-Caax, which agree with the predicted molecular masses, are indicated. The broad band on the bottom of the gel corresponds to free radiolabeled substrate.

![Figure 5. In Vitro Isoprenylation of Modified GFP Fusion Proteins by BY-2 Cell-Free Extracts.](image)
of dexamethasone induction (Figure 4; see Supplemental Table 2 online). While Gol did not significantly overcome inhibition of GFP-BD-CVIL plasma membrane localization by Fos, Fol exhibited a 62% capacity to counteract the effect of Fos [(69 – 20)/(99 – 20) × 100], and an 11% capacity to block the effect of both inhibitors [(16 – 6)/(99 – 6) × 100]. By contrast, 20 μM GGol fully complemented the inhibitory effect of Fos under all conditions (Figure 4; see Supplemental Table 2 online), and 100% recovery of GFP fluorescence to the cell periphery was achieved at concentrations of GGol as low as 5 μM. The concentration of MVA required to achieve a similar degree of complementation was 3 mM. The specificity of the GGol effect is remarkable, suggesting efficient conversion to the corresponding diphosphate in tobacco BY-2 cells.

In Vitro Isoprenylation of GFP Fusion Proteins by BY-2 Cell-Free Extracts

Protein isoprenyltransferase substrate specificities are high, but not absolute (Trueblood et al., 1993), and a strongly active farnesyltransferase might weakly accept a protein substrate with a C-terminal CVIL motif for attachment of a farnesyl residue, which might be sufficient for anchoring the protein into the plasma membrane. To rule out this possibility, modified His6-GFP-BD-CVIL proteins were expressed in *Escherichia coli* and isoprenylated in vitro using BY-2 cell extracts as a source of protein isoprenyltransferases (Figure 5). As controls, rat sarcoma (RAS) proteins with known CaaX sequences were used (Randall et al., 1993). As shown in Figure 5, RAS-CAIM and GFP-BD-CVIM were strongly farnesylated in the presence of BY-2 extracts, whereas RAS-CAIL and GFP-BD-CVIL were predominantly geranylgeranylated. As expected, RAS-SVLS and GFP-BD-SVIL controls were not detectably isoprenylated in the presence of BY-2 extracts. The positions of isoprenylated GFP-CaaX and Ras-CaaX agree with the predicted molecular masses of 31.7 and 26.0 kD, respectively. These results demonstrate that, as in other systems, protein isoprenyltransferases from BY-2 cells exhibit high selectivity for CaaX protein substrates.

In Vivo Isoprenylation of GFP Fusion Proteins in BY-2 Cells

To definitively establish in vivo geranylgeranylation, or loss of geranylgeranylation, of His6-GFP-BD-CVIL in the absence or presence of MEP pathway inhibitors, respectively, His6-GFP-BD-CVIL expressed in *E. coli* was compared with His6-GFP-BD-CVIL from extracts of BY-2 cells treated with or without inhibitors. These proteins were resolved by SDS-PAGE, and the region of the gel containing GFP was identified by immunoblot analysis, cut and digested with the endoprotease Asp-N. Peptides were then extracted, fractionated, and submitted for matrix-assisted laser-desorption ionization time of flight (MALDI-TOF) peptide mass fingerprinting and MALDI-TOF tandem mass spectrometry (MS/MS) peptide mass sequencing. Unprenylated, farnesylated, and geranylgeranylated His6-GFP-BD-CVIL proteins were predicted to produce monoisotopic C-terminal peptide fragments of 2756.4800, 2784.5620, and 2852.4431 D, respectively. As shown in Figure 6, a peptide with a parent ion of 2852.680 mass-to-charge ratio (m/z) was detected from control BY-2 cells, supporting the conclusion that His6-GFP-BD-CVIL is geranylgeranylated in vivo. By contrast, a peptide with a parent ion of 2756.6200 m/z was detected from BY-2 cells treated with Fos; Figure 6), confirming the essential role of the MEP pathway in GFP-BD-CVIL geranylgeranylation. The peptide sequences of the parent ions ([M+H]⁺ = 2852.6800 and [M+H]⁺ = 2756.6200)

![Figure 6](http://example.com/fig6.png)

Figure 6. In Vivo Characterization of His6-GFP-BD-CVIL Isoprenylation by MS Analysis of His6-GFP-BD-CVIL–Derived Peptides.

Solubilized total membrane and supernatant fractions from tobacco BY-2 cells induced to express His6-GFP-BD-CVIL were resolved by SDS-PAGE, and recombinant His6-GFP-BD-CVIL was cut from the gel, digested with Asp-N, and extracted and fractionated by solid-phase extraction for MALDI-TOF MS peptide mass fingerprinting and MALDI-TOF tandem mass spectrometry (MS/MS) peptide mass sequencing (detailed in Supplemental Figure 1 online). A significant peak was detected at an m/z of 2852.68, which corresponded to the predicted mass of a geranylgeranylated, methylated C-terminal His6-GFP-BD-CVIL peptide. Peaks at an m/z of 2756.62 or an m/z of 2784.56, which correspond to unprenylated and farnesylated peptides, respectively, were not detected in the absence of inhibitors (Control). However, a significant peak was detected at an m/z of 2756.62 from tobacco BY-2 cells treated with Fos.
were confirmed by MALDI-TOF MS/MS (see Supplemental Figure 1 online).

Isoprenylation and Localization of GFP-CaM61 and GFP-BD-CVIL Fusion Proteins

We were surprised by the discrepancy between our observations using GFP fused to the basic domain and CVIL motif of CaM61 and those of Dong et al. (2002) using GFP fused to the full-length CaM61. To investigate this discrepancy further, we obtained the Agrobacterium strain harboring the GFP-CaM61 fusion plasmid used by Dong et al. (2002) for agroinfiltration of tobacco (Nicotiana benthamiana) leaves and stable transformation of BY-2 cells. When transiently transformed epidermal cells of N. benthamiana were examined by confocal microscopy, GFP fluorescence was associated with the cell periphery, but also with cytoplasmic strands and the nucleus (Figure 7A). At higher magnifications, it was evident that fluorescence was associated with the nucleus, but not with the nucleolus (Figure 7B). By contrast, when the same experiment was performed with the truncated GFP-BD-CVIL construct developed in this study as a reporter for protein geranylgeranylation in BY-2 cells, plasma membrane association was much more clear (Figure 7C), and labeling was more pronounced in the nucleolus (Figure 7D). Essentially the same observations were made with newly transformed BY-2 cells (Figure 8). Expression of the full-length GFP-CaM61 protein resulted in association of GFP fluorescence with intracellular membranes (i.e., endoplasmic reticulum [ER] and perinuclear membranes), plasma membrane, and cytoplasmic strands (Figure 8A), whereas expression of GFP-BD-CVIL resulted in nearly exclusive association of GFP fluorescence with the plasma membrane (Figure 8B). MV treatment, using conditions described by Dong et al. (2002), had little or no effect on the localization of GFP-CaM61 (Figure 8C) and GFP-BD-CVIL (Figure 8D). Fos treatment, on the other hand, caused partial translocation of GFP-CaM61 to the nucleus, but not the nucleolus (Figure 8E), and translocation of GFP-BD-CVIL to both the nucleus and the nucleolus (Figure 8F). Treatment with both MV and Fos increased the nuclear localization of GFP-CaM61 (Figure 8G) and caused almost complete translocation of GFP-BD-CVIL to both the nucleus and the nucleolus (Figure 8H). These results demonstrate that our reporter system is much more suitable for visualizing protein isoprenylation in vivo and show the predominant accumulation of unprenylated GFP-BD-CVIL (i.e., in the presence of Fos) and GFP-BD-SVIL in nucleoli (Figure 1). Addition of Ca^{2+} or the calmodulin inhibitor calmidazolium (cf. Merret et al., 2007) did not affect the localization of GFP-CaM61 or GFP-BD-CVIL (see Supplemental Figure 2 online). Furthermore, the MV used in these experiments, and all experiments herein reported, was biologically active, as judged by its effect on the growth of BY-2 cell cultures (see Supplemental Figure 3 online).

Figure 7. Localization of GFP-CaM61 and GFP-BD-CVIL in Epidermal Cells of N. benthamiana Leaves.

(A) Localization of GFP-CaM61, showing GFP fluorescence associated with the cell periphery, nucleus, and cytoplasmic strands.
(B) At higher magnification, GFP-CaM61 is observed in the nucleus, but not the nucleolus.
(C) Localization of GFP-BD-CVIL, showing GFP fluorescence associated with the plasma membrane and nucleus, but not cytoplasmic strands.
(D) At higher magnification (threefold electronic zoom), GFP-BD-CVIL is observed to be concentrated in the nucleolus.

Bars = 10 μm. [See online article for color version of this figure.]
A Bioassay for the Identification of MEP Pathway and PGGT 1 Inhibitors

As predicted (Hemmerlin et al., 2006), DX restored plasma membrane localization of Hi$_6$-GFP-BD-CVIL in the presence of OC (Figure 9). The ability of DX to bypass the DXS reaction in the presence of OC confirmed the prediction that OC inhibits DXS (see also Sakakibara et al., 2005). Not surprisingly, DX did not complement the inhibition of MEP synthase by Fos. The bioassay shown in Figure 9 is equally sensitive to inhibitors of PGGT 1; indeed, the PGGT 1 inhibitor GGti-2133 caused Hi$_6$-GFP-BD-CVIL translocation to the nucleus/nucleolus (Figure 9). However, in contrast with MEP pathway inhibitors, GGti-2133 inhibition of Hi$_6$-GFP-BD-CVIL plasma membrane localization was not complemented by 5 μM GGol. Thus, inhibitors of different MEP pathway enzymes, or PGGT 1, can be readily distinguished by chemical complementation.

The results shown in Figure 9 establish a convenient bioassay for the detection of novel MEP pathway inhibitors that are efficiently absorbed by BY-2 cells. This has clinical and agricultural significance, as MEP pathway inhibitors are potentially useful as novel antibiotics, antimalarial drugs, or herbicides (Lichtenthaler et al., 2000; Zeidler et al., 2000; Rodriguez-Concepción, 2004; Rohmer et al., 2004; Kuntz et al., 2005). To screen for novel MEP pathway inhibitors, transformed BY-2 cells are introduced into 96-well plates, treated with chemicals from a combinatorial chemical library, induced to express GFP-BD-CVIL with dexamethasone, and examined by confocal microscopy. Inhibition of plasma membrane localization of GFP-BD-CVIL can then be used as a means of identifying compounds that either inhibit the MEP pathway or PGGT 1, and restoration of plasma membrane localization by GGol can be used to confirm those that inhibit the MEP pathway. The utility of

Figure 8. Localization of GFP-CaM61 and GFP-BD-CVIL in BY-2 Cells.

(A) Localization of GFP-CaM61 in BY-2 cells, showing GFP fluorescence associated with ER and perinuclear membranes, plasma membrane, and cytoplasmic strands.
(B) Localization of GFP-BD-CVIL in BY-2 cells, showing GFP fluorescence associated exclusively with the plasma membrane.
(C) Localization of GFP-CaM61 in BY-2 cells treated with MV as described by Dong et al. (2002), showing GFP fluorescence associated with ER and perinuclear membranes, plasma membrane, and cytoplasmic strands.
(D) Localization of GFP-BD-CVIL in BY-2 cells treated with MV as described by Dong et al. (2002), showing GFP fluorescence associated with the plasma membrane (faint fluorescence is also seen in the nucleus).
(E) Localization of GFP-CaM61 in BY-2 cells treated with Fos, showing partial translocation of GFP fluorescence to the nucleus, but not the nucleolus.
(F) Localization of GFP-BD-CVIL in BY-2 cells treated with Fos, showing translocation of GFP fluorescence to the nucleus and nucleolus.
(G) Localization of GFP-CaM61 in BY-2 cells treated with MV and Fos, showing increased translocation of GFP fluorescence to the nucleus.
(H) Localization of GFP-BD-CVIL in BY-2 cells treated with MV and Fos, showing almost complete translocation of GFP fluorescence to the nucleus and nucleolus.
Bars = 10 μm. [See online article for color version of this figure.]
this high-throughput screening procedure is shown in Figure 10. BY-2 cells expressing His6-tagged GFP-BD-CVIL were treated with or without OC (30 μM), MV (5 μM), or a combination of both inhibitors, followed by fluorescence microscopy at low resolution. Control and MV-treated cells were apparently identical (Figure 10), with GFP fluorescence at the periphery of the cells, especially the boundary between neighboring cells, and to some extent the perinuclear membrane, whereas the GFP fluorescence in OC-treated cells was almost exclusively nuclear. The combination of MV and OC did not visibly affect GFP fluorescence compared with OC alone.

DISCUSSION

For years, it was assumed that the FPP and GGPP used in plant cells for protein isoprenylation was derived from the MVA pathway (Crowell, 2000). This assumption was based on early observations that incubation of tobacco BY-2 cells or spinach seedlings with radiolabeled MVA resulted in the incorporation of radioactivity into proteins (Randall et al., 1993; Shipton et al., 1995). Even after the discovery and elucidation of the plastidial MEP pathway (cf. Rohmer, 1999; Rodrı́guez-Concepción and Boronat, 2002), the apparently cytosolic location of protein isoprenyltransferases suggested that the isoprenyl diphosphates used for protein isoprenylation were also synthesized in the cytosol. However, this assumption was challenged by the observation that low molecular weight proteins could be radio-labeled with [14C]DX (Hemmerlin et al., 2003). This labeling supports the hypothesis that IPP, GPP, or GGPP can be exported from plastids to the cytosol, which would then efficiently be used for isoprenylation of proteins. Here, it is definitively shown that the GGPP used for geranylgeranylation of a GFP-BD-CVIL protein is predominantly derived from the plastidial MEP pathway in tobacco BY-2 cells (Figures 3, 4, 9, and 10).

It is not clear whether plastidial or cytosolic GGPP synthases (GGDS) are necessary for protein isoprenylation in BY-2 cells. If IPP or GPP are exported, then a cytosolic GGDS is required for protein geranylgeranylation, but if GGPP is exported, a plastidial GGDS is required (Figure 11). The fact that Arabidopsis possesses several GGDS enzymes (Okada et al., 2000), two of which were reported to be localized to the ER, two to plastids, and one to mitochondria, does not conflict with the results shown here because GGDS genes are differentially expressed in a tissue-and development-specific manner, and it is possible that plastidial forms of GGDS are predominant in BY-2 cells. Plastids in BY-2 cells are generally considered to be proplastids, although cytokinin treatment can stimulate their development into amyloplasts (Miyazawa et al., 2002), where significant amounts of starch are produced. Consequently, the metabolic flux through the MEP pathway is not directed toward producing chlorophylls, carotenoids, plastoquinones, and other isoprenoids.
characteristic of differentiated plastids. This allows for carbon flux through the MEP pathway to be directed toward processes such as protein isoprenylation. The situation in green leaves may be entirely different because carbon flux through the MEP pathway is directed toward producing photosynthetic pigments and electron carriers. Thus, the question arises: Is the GGPP necessary for protein geranylgeranylation derived from the MEP pathway in green leaves, roots, or tomato fruits? Perhaps the existence of both plastidial and cytosolic forms of GGDS (Okada et al., 2000) suggests that the GGPP used for protein geranylgeranylation has different biosynthetic origins in different tissues. Analysis of GGDS mutants of *Arabidopsis* may help to answer this question.

The MEP pathway origin of the GGPP used for protein isoprenylation in our test system is an intriguing result in view of the fact that, in a recent study using vesicles prepared from envelope membrane fractions of spinach, kale, and Indian mustard (*Brassica juncea*), unidirectional transport of IPP and GPP occurred from the plastid to the cytosol, while transport of intermediates like FPP and GGPP was less efficient (Bick and Lange, 2003). Several published studies support the hypothesis that IPP, GPP, and GGPP are transported between the cytosolic and plastidial compartments, with a preference for transport from the plastid to the cytosol (Hemmerlin et al., 2003; Skorupinska-Tudek et al., 2008). This observation corroborates in vivo observations (Kasahara et al., 2002, 2004; Laule et al., 2003; Sakakibara et al., 2005) with inhibitor-treated *Arabidopsis* seedlings, cell cultures of Madagascar periwinkle (*Catharanthus roseus*) (Schuhr et al., 2003), and BY-2 cells (Hemmerlin et al., 2003). However, in the two latter studies, exogenous MVA was, to some extent, incorporated into plastids and used to produce plastidial isoprenoids. Under stress conditions, the export of MEP-derived intermediates might be required to satisfy the need for the production of defense-related sesquiterpenoids in the cytosolic compartment (Piel et al., 1998; Adam et al., 1999). Dudareva et al. (2005) showed that, in the epidermis of snapdragon petals, only the plastid-localized MEP pathway is active in the formation of volatile terpenes and provides IPP precursors for both plastidial monoterpene and cytosolic sesquiterpene biosynthesis. If such an exported intermediate were to be allylic GPP, a cytosolic farnesyl diphosphate synthase (FDS) would be expected to catalyze its conversion to FPP. Alternatively, in BY-2 cells, a cytosolic FDS might catalyze GGPP synthesis, and, if present, GGDS might catalyze the conversion of exported GPP to GGPP. Under some conditions, FDS enzymes are capable of synthesizing GGPP in vitro (Eberhardt and Rilling, 1975). Furthermore, it was recently shown that maize (*Zea mays*) endosperm cDNAs coding for FDS, when expressed in an engineered *E. coli* strain, provided the GGPP needed for carotenoid formation (Cervantes-Cervantes et al., 2006).

A system for phosphorylation of Fol and GGol in plant cells has been described (Thai et al., 1999), and incorporation of radiolabeled Fol into ubiquinone in BY-2 cells (Hartmann and Bach, 2001) is indicative of double phosphorylation preceding transport into mitochondria. Our observations are consistent with the prediction that this CTP/GTP-dependent phosphorylation system will not accept Gol as a substrate, but will accept GGol and Fol (Thai et al., 1999), thus preventing the conversion of Gol to
an excess of protein and isoprenyl diphosphate substrates, for this is that in vitro isoprenylation reactions are performed with isoprenylation is higher in vivo than in vitro. A likely explanation for this is that in vitro isoprenylation reactions are performed with an excess of protein and isoprenyl diphosphate substrates, whereas in vivo concentrations of these substrates are likely to be much lower. Thus, substrates with weak affinities for PFT or PGGT 1 are more likely to be aberrantly isoprenylated in vitro.

Rodriguez-Concepción et al. (1999) showed that, in epidermal cells of Arabidopsis plants expressing GFP fused to the C-terminus of petunia CaM53 (GFP-CaM53), some GFP fluorescence was always present in the nucleus, with or without MV treatment. In this study, a potato virus X (PVX) vector was used for ectopic expression of GFP-CaM53. Thus, GFP-CaM53 expression was driven by a strong promoter and the epidermal cells might not have been capable of providing sufficient amounts of isoprenyl diphosphates for complete isoprenylation of GFP-CaM53. This alone could account for the partial nuclear localization of GFP-CaM53 observed in epidermal cells of Arabidopsis as well as the partial nuclear localization of GFP-CaM61 and GFP-BD-CVIL observed in epidermal cells of N. benthamiana (Figure 7). Moreover, the translocation of GFP-CaM53 from the plasma membrane to the nucleus in the presence of high concentrations of MV (25 and 50 μM), albeit incomplete, might have been caused by the inhibitor’s cytotoxicity, as previously reported (Bach and Lichtenthaler, 1983). Interestingly, when leaves were kept in the dark, GFP-CaM53 localization shifted from the plasma membrane to the nucleus, and this effect was reversed by the addition of 2% sucrose. In the dark, photosynthesis is shut down in the chloroplasts of parenchymal cells, which normally provide carbohydrates (i.e., sucrose) to neighboring epidermal cells. In epidermal cells, sucrose is metabolized to triose phosphate and pyruvate, and, because epidermal cells are nonphotosynthetic, both products are transported into plastids and supply the MEP pathway with precursor compounds. In the dark, the decreased supply of sucrose to the epidermal cells presumably results in a decreased metabolic flux rate through the MEP pathway, decreased GGPP synthesis, and decreased geranylgeranylation of GFP-CaM53. However, exogenous sucrose reverses this effect and restores the MEP pathway, GGPP synthesis, and GFP-CaM53 geranylgeranylation. Indeed, evidence abounds for transport of MEP pathway intermediates between cells and tissues (Burlat et al., 2004; Gutiérrez-Nava et al., 2004; Oudin et al., 2007).

Our results are in contrast with those of Dong et al. (2002), who expressed GFP fused to the full-length rice CaM61 and reported that MV shifted the GFP-CaM61 fusion protein from membranes to the nucleus. However, this MV-induced shift was marginal, and we were not able to reproduce the result, even when we used the same GFP-CaM61 construct (Figure 8) and the same experimental conditions (we also confirmed the biological activity of the MV we used; see Supplemental Figure 3 online). Moreover, neither calcium nor the calmodulin inhibitor calmidazolium affected the localization of GFP-CaM61 or GFP-BD-CVIL. However, our data demonstrate a minor role for the MEP pathway in GFP-BD-CVIL plasma membrane localization. Indeed, the GFP-BD-CVIL reporter system for detection of MEP pathway inhibitors is most effective in the presence of a low concentration of MV, which abolishes all traces of plasma membrane localization that potentially depend on MVA-derived GGPP.

The data shown in Figures 9 and 10 establish a rapid, visual assay for inhibitors that either inhibit the MEP pathway or PGGT 1. This assay can be adapted to high-throughput screening of

Figure 11. Biosynthetic Origins of Farnesyl Diphosphate and Geranylgeranylin Diphosphate in BY-2 Cells for Protein Farnesylation and Geranylgeranylation, Respectively.

CaaX, isoprenylation motif; DMAPP, dimethyl allyl diphosphate; DXP, 1-deoxy-D-xylulose 5-phosphate; FDS, farnesyl diphosphate synthase; GGDS, geranylgeranyl diphosphate synthase; G3P, d-glyceraldehyde 3-phosphate; GGPP, geranyl diphosphate; IPP, isopentenyl diphosphate; PYR, pyruvate.
combinatorial chemical libraries for novel inhibitors of the MEP pathway. Thus, the data in Figure 9 have pharmaceutical and agricultural significance, as MEP pathway inhibitors may be useful as antibiotics, antimalarial drugs, or herbicides. Because resistance to existing antibiotics and herbicides progressively limits their usefulness, screening methods such as this will be essential for future drug development and sustainable agriculture. While this manuscript was in preparation, Simonen et al. (2008) reported a visual system similar to that described here that was used for the optical high-throughput screening of protein isoprenyltransferase inhibitors based on GFP, which was tagged with the isoprenylation motif of human H-Ras and transformed into human osteosarcoma (U-2 OS) cells.

METHODS

Plant Materials

The tobacco (Nicotiana tabacum cv BY-2) suspension cell culture was made available by Toshiyuki Nagata (Tokyo University, Japan) (Nagata et al., 1992). Cultivation was done as described (Hemmerlin and Bach, 1998, 2000). Rice seeds (Oryza sativa ssp. japonica ‘Rubribarbis’) were provided by the Botanical Garden of the Université Louis Pasteur and germinated for 4 d at 22°C on moistened Whatman 3MM filter paper in plastic boxes with constant light. The Agrobacterium tumefaciens strain LB4404 harboring the plasmid coding for GFP-CaM61 (Dong et al., 2002) was kindly provided by Wen-Hui Shen (Institut de Biologie Moléculaire des Plantes, Strasbourg, France).

Chemicals

MVA lactone, Gol, Fol, and GGol were purchased from Sigma-Aldrich. MV (Alberts et al., 1980) was a kind gift from Alfred Alberts (Merck, Rahway, NJ). Before use, the lactones of MV and MVA were converted to their open acid forms. Fos (Okuhara et al., 1980) was made available by Robert J. Elers (Monsanto, St. Louis, MO). The peptidomimetic protein geranylgeranylation inhibitor GQu (Vasudevan et al., 1999) was purchased from Calbiochem (Merck). OC was provided by Klaus Grossmann (BASF, Limburgerhof, Germany). The fluorochrome probe FM4-64 was provided by Molecular Probes. All other chemicals were from usual commercial sources and were of highest available purity.

Cloning of the C-Terminal End of Rice CaM61

According to standard protocols, total RNA was produced from rice seedlings (50 mg). Four micrograms were used as template for RT-PCR amplification of the coding sequence for the C-terminal basic domain/CaaX motif of rice CaM61 using CaM61F (5’-TACGAGAGCTCGT-CAGTG-3’) as a forward primer and CaM61R (5’-GCTGCTTAGATTACAGGATCACGACTTC-3’) as a reverse primer. These primers introduced a SacI restriction site (underlined) at the 5’ end and an XbaI restriction site (underlined) at the 3’ end of the PCR fragment. For site-directed mutagenesis, the reverse CaM61R primer was replaced by BDSVIR (5’-GCTGCTTAGATTACAGGATCACGACTTC-3’) to mutate the Cys (TGC) to Ser (TGG, in bold). The PCR fragments were cloned in frame into the SacI and XbaI sites of pGFP-MRC (Rodriguez-Concepción et al., 1999) at the C-terminal end of a synthetic GFP.

Vector Constructions and Inducible Expression of GFP Fusion Proteins

The sequence encoding the GFP-BD-Civil fusion protein was subcloned into the Xhol and Spel sites of the pTA7001 vector (Aoyama and Chua, 1997). To generate a Xhol restriction site (underlined) at the 5’ and a Spel restriction site (underlined) at the 3’ end, we used the forward primer pGFPXHF (5’-AATTTCCTCGAGTACGAGACAGTACGATGGTCTG-3’) and the reverse primer pGFPXHR (5’-CCCATCTGCTGCAATATTCGCG-3’). The reverse primer SLSp (5’-GGAATTCGCGTCGAGAACAATTCCGACTTC-3’) was used to amplify the sequence corresponding to GFP-BD-SVL, and the reverse primer pGFPSPR (5’-CCCGATCTGCTGCAATATTCGCG-3’) was used to amplify GFP. Agrobacterium tumefaciens strain LBA 4404 was used for Agrobacterium-mediated transformation of BY-2 cells. The transformation protocol followed that of Criqui et al. (2000), with the exception that transformed cells were clonally selected by callus induction. Stably transformed BY-2 cells were subcultured into Murashige and Skoog medium and supplemented with 113 µg mL⁻¹ hygromycin B. To induce protein expression, 7-d-old BY-2 cells were diluted fivefold into fresh medium (3 mL total volume per sample) in 6-well culture plate clusters (Corning) and treated with 10 µM dexamethasone (Sigma-Aldrich), which was dissolved in 100% DMSO at a stock concentration of 30 mM. The solvent alone did not exert any measurable effect on protein expression or localization of GFP fluorescence. BY-2 cells treated with dexamethasone were placed on a rotary shaker at 140 rpm and kept in darkness at 26°C for 15 h (standard condition empirically determined). For inhibition studies, cells were treated for 3 h with inhibitors, alone or in combination, followed by induction of GFP or GFP fusion protein expression by dexamethasone for 15 h. For chemical complementation experiments, isoprenols (Gol, Fol, and GGol) or MVA were added together with dexamethasone, but otherwise the same time schedule as described above was followed.

Agroinfiltration of Nicotiana benthamiana Leaves

Overnight cultures of Agrobacterium were washed with water and suspended at an OD600 ~1 in water containing 30 µM dexamethasone. The suspension was then infiltrated into 1-month-old N. benthamiana leaves, and fluorescence microscopy was performed after 30 h.

Confocal Microscopy

Fluorescent cells were counted at low magnification using a LSM510 confocal laser scanning microscope equipped with an inverted Zeiss Axiovert 100M. At confocal resolution, individual cells representative of the various populations were analyzed, and images were acquired and analyzed as described (Hemmerlin et al., 2006). At high resolution, pictures were taken such that the focal plane included the nucleus and nucleolus. Transmission images were recorded in Nomarski phase contrast mode. The fluorescence intensity of different subcellular structures and compartments (vacuole, plasma membrane, nucleus, and cytoplasm) was measured pixel-by-pixel using Image J software version 1.31 (Wayne Rasband, NIH; http://rsb.info.nih.gov/ij).

In Vitro Isoprenylation of GFP-BD-CaaX Proteins

The 843-bp DNA fragments coding for the GFP-BD-CIVL, GFP-BD-CIVM, and GFP-BD-SVL fusion proteins were cloned into the NdeI and HindIII restriction sites of the pBAD vector (accession number U62637 from Clontech). Restriction sites were introduced by PCR using the forward primer NdeH6CAA-X-F (5’-GGAATTCGATATGCATCACTACCATCATTACATCGTAGAAGGCGAGGA-3’) and the reverse primer HindCIVL-R (5’-CCTAAGGTTGGTACGACTCACCGTCTTG-3’) or HindCIVMR (5’-CCTAAGGTTGGTACGACTCACCGTCTTG-3’) or HindSVL-R (5’-CCGAAGCTTTGACGATACCGTCTTG-3’). GFP-BD-CaaX proteins were expressed in liquid cultures of Escherichia coli Rosetta cells (EMD Biosciences/Novagen) containing pBAD-GFP-BD-CIVL, pBAD-GFP-BD-CIVM, or pBAD-GFP-BD-SVL constructs. Protein inductions were performed at 22°C with 0.1% l-arabinose for
Complete Protease Inhibitors (Roche Diagnostics). Cell disruption was accomplished by three 15-s pulses at 4°C using a Branson Sonifier 450 and a microprobe at 80% maximum power. Cell debris was removed by centrifugation at 5000g for 10 min at 4°C. In vitro protein isoprenylation was performed essentially as described (Randall et al., 1993). Ras proteins with CAIM, CAIL, or SVLS motifs at the C terminus were used as control protein substrates. Reactions were incubated for 60 min at 30°C and analyzed by SDS-PAGE and fluorography using Amplify fluorographic reagent (Amersham Biosciences) and Kodak XAR-5 film (Eastman Kodak).

MS Analysis of GFP-BD-CVIL–Derived Peptides

His6-tagged GFP-BD-CVIL fusion protein expressed in *E. coli* was purified by Ni-affinity chromatography (i.e., with elution at 750 mM imidazole) and used as a standard. Transformed BY-2 cells expressing His6-tagged GFP-BD-CVIL (165 mg fresh weight) were ground in liquid nitrogen and resuspended in buffer A consisting of 10 mM Tris-HCl, pH 8.0, 1 M NaCl, 20 mM glycerol, and 10 mM imidazole. The slurry was then incubated at room temperature for 30 min and centrifuged at 8000g for 30 min at 4°C. The supernatant was removed and stored on ice. The pellet was gently washed with buffer A and suspended in solubilization solution (1% n-dodecyl-β-D-maltopyranoside and 5 mM β-mercaptoethanol). After mechanical homogenization, incubation at room temperature for 30 min, and centrifugation at 8000g for 30 min at 4°C, aliquots of membrane extracts were subjected to semipreparative SDS-PAGE according to the Laemmli protocol (Laemmli, 1970). Collection of protein spots and in situ digestion were performed as described (Heintz et al., 2006). Briefly, after gel dehydration with acetonitrile, proteins were digested overnight at room temperature in 50 μL of a solution containing 12.5 ng μL−1 of a modified *Pseudomonas* endoproteinase Asp-N (Roche) prepared in 25 mM NH4HCO3. Finally, a double peptide extraction was performed, first with 50 μL of 60% (v/v) acetonitrile in 5% (v/v) formic acid, and subsequently with 95% (v/v) acetonitrile in 5% (v/v) formic acid. The samples were then vacuum-concentrated to 10 μL.

Peptide concentration and fractionation was performed on a solid-phase extraction microelution plate (HLB OASIS). The plate was placed in a manifold connected to a vacuum pump, and activation was performed with 200 μL of methanol. The plate was subsequently washed with 200 μL of water. A 10-μL portion of the peptide mixture was mixed with 90 μL of 0.5% formic acid and loaded into a vial. The peptides were then sequentially eluted in seven steps with 50 μL of 5, 10, 20, 35, 40, 60, and 95% methanol in 0.5% formic acid. The eluted fractions were vacuum-concentrated to 10 μL and subsequently used for MALDI-TOF MS and MS/MS analysis, which was performed on an Ultraflex TOF-TOF mass spectrometer (Bruker-Daltonik) as described elsewhere (Heintz et al., 2006). Theoretical masses (monoisotopic [M+H]+ and average) for isoprenylated and methylated versus unprenylated peptides were calculated using BioTools v.3 software (Bruker-Daltonik).

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure 1. MALDI-TOF/TOF MS/MS Spectra.

Supplemental Figure 2. Addition of Ca2+ or the Calmodulin Inhibitor Calmidazolium Does Not Affect the Localization of GFP-CaM61 or GFP-BD-CVIL.

Supplemental Figure 3. Mevinolin Treatment of BY-2 Cell Cultures Arrests Cell Growth.

Supplemental Table 1. χ2 Analysis of Data in Figure 3.

Supplemental Table 2. χ2 Analysis of Data in Figure 4.

ACKNOWLEDGMENTS

This work was supported by the Centre National de la Recherche Scientifique (A.H., M.R., and T.J.B.), by the Université Louis Pasteur (M.R.), by the Agence Nationale de la Recherche (ANR, grants “Terpene,” NT05-3–45695 and Biosis, BLAN06-2_135891; M.R., T.J.B.), by the Institut Universitaire de France (M.R.), and by Grant BMC2003-06833 from the Spanish Ministerio de Ciencia y Tecnologica and Fondo Europeo de Desarrollo Regional (FEDER, A.B.). A portion of this work was also supported by USDA Grant 2003-02151 (D.N.C.). D.H. was supported by the ANR postdoc fellowship (Terpene). M.H. is supported by a PhD fellowship from the Région Alsace. We also thank the Centre National de la Recherche Scientifique, the Université Louis Pasteur, the Région Alsace, and the Association pour la Recherche sur le Cancer for the support of the Inter-Institute confocal microscopy equipment at the Institut de Biologie Moléculaire des Plantes in Strasbourg. We thank N.-H. Chu for the pTA plasmid, A.W. Alberts for a generous gift of MV, R.J. Ellers for a sample of Fos, and K. Grossmann for the OC. We are indebted to Wen-Hui Shen (Institut de Biologie Moléculaire des Plantes, Strasbourg) for providing the Agrobacterium strain harboring the plasmid for expression of intact GFP-CaM61. We express our thanks to technical staff members at the Institut de Biologie Moléculaire des Plantes’ central services.

Received September 12, 2008; revised December 12, 2008; accepted December 19, 2008; published January 9, 2009.

REFERENCES

Lemiech, E., Yu, W., Sanchez, J.P., Mettouchi, A., Mathur, J., and

Rohmer, M. (1999). The discovery of a mevalonate-independent path-

Sandmann, G., and Böger, P. (1989). Inhibition of carotenoid biosyn-

ated proteins are abundant in the mitochondria and nuclei of spinach. J. Biol. Chem. 270: 566–572.

The Plastidial 2-C-Methyl-d-Erythritol 4-Phosphate Pathway Provides the Isoprenyl Moiety for Protein Geranylgeranylation in Tobacco BY-2 Cells

Esther Gerber, Andréa Hemmerlin, Michael Hartmann, Dimitri Heintz, Marie-Andrée Hartmann, Jérôme Mutterer, Manuel Rodríguez-Concepción, Albert Boronat, Alain Van Dorsselaer, Michel Rohmer, Dring N, Crowell and Thomas J. Bach

Plant Cell 2009;21:285-300; originally published online January 9, 2009;
DOI 10.1105/tpc.108.063248

This information is current as of July 8, 2017