Teaching Tools in Plant Biology

The Plant Cell is initiating a new online-only feature called “Teaching Tools in Plant Biology.” Each month, beginning in October 2009, a new set of teaching materials on a different theme—such as Leaf Development or Epigenetics—will be added to the journal website. Each Teaching Tool will include a short essay introducing the topic, a PowerPoint lecture with notes, and suggested further readings. Tools will be “off-the-shelf” modules but easily customizable by the instructor. They are designed with an audience of upper-level undergraduates in mind, but subsets of slides can be incorporated into lectures designed for introductory biology courses, public lectures, or even graduate-level courses. We will be creating most of the artwork ourselves to allow subscribers unrestricted use of the materials.

The materials will be peer reviewed by leaders in the field to ensure accuracy, like all the material in The Plant Cell. Unlike a conventional teaching textbook, these electronic lectures will be regularly updated as new developments arise. We will also solicit contributions from researchers and teachers that we will format and edit for continuity.

We hope that these resources help plant biologists teach and communicate about plant biology. Look for Teaching Tools starting in October 2009 at www.plantcell.org/teachingtools/teaching.dtl.

Teaching Tools are available only as part of your subscription to The Plant Cell.

This resource is being developed by Mary Williams, PhD, who taught plant biology to undergraduates at Harvey Mudd College. Feedback will always be appreciated at mwilliams@aspb.org.

Check Out Teaching Tools at www.plantcell.org

Educating students one slide at a time

- New Free Subscriber Feature in The Plant Cell
- Customizable “off-the-shelf” modules
- Unrestricted use of materials
- Peer reviewed by leaders in the field
- Updated as new developments arise
The Arabidopsis Book Posts New Content!

The American Society of Plant Biologists has published The Arabidopsis Book (TAB) as a free online compendium since 2002. ASPB is providing funds for the production of TAB as a public service.

Founded by Chris Somerville and Elliot Meyerowitz, TAB now has more than 60 chapters online and receives nearly 100,000 full-text downloads every year.

The current editorial board is working hard to continue TAB’s ongoing expansion:

Rob Last (chair), Michigan State University
Caren Chang, University of Maryland
Ian Graham, University of York
Dan Kliebenstein, University of California, Davis
Ottoline Leyser, University of York
Rob McClung, Dartmouth College
Harvey Millar, University of Western Australia
Cynthia Weinig, University of Minnesota

The board is overseeing all new content development as well as updates to existing chapters to keep TAB the most comprehensive and current work on Arabidopsis.

All chapters are hosted in partnership with BioOne (www.bioone.org) in HTML and PDF formats.
Save the Date!
July 31 - August 4, 2010

Joint Annual Meeting of the
American Society of Plant Biologists
and the
Canadian Society of Plant Physiologists
Société Canadienne de Physiologie Végétale

http://www.aspb.org/meetings/pb-2010
The Plant Cell is initiating a new online-only feature called “Teaching Tools in Plant Biology.” Each month, beginning in October 2009, a new set of teaching materials on a different theme—such as Leaf Development or Epigenetics—will be added to the journal website. Each Teaching Tool will include a short essay introducing the topic, a PowerPoint lecture with notes, and suggested further readings. Tools will be “off-the-shelf” modules but easily customizable by the instructor. They are designed with an audience of upper-level undergraduates in mind, but subsets of slides can be incorporated into lectures designed for introductory biology courses, public lectures, or even graduate-level courses. We will be creating most of the artwork ourselves to allow subscribers unrestricted use of the materials.

The materials will be peer reviewed by leaders in the field to ensure accuracy, like all the material in The Plant Cell. Unlike a conventional teaching textbook, these electronic lectures will be regularly updated as new developments arise. We will also solicit contributions from researchers and teachers that we will format and edit for continuity.

We hope that these resources help plant biologists teach and communicate about plant biology. Look for Teaching Tools starting in October 2009 at www.plantcell.org/teachingtools/teaching.dtl.

Teaching Tools are available only as part of your subscription to The Plant Cell.

This resource is being developed by Mary Williams, PhD, who taught plant biology to undergraduates at Harvey Mudd College. Feedback will always be appreciated at mwilliams@aspb.org.
Forget DNA purification

Choose Direct PCR

Take the direct route from sample to results

Finnzymes’ Direct PCR approach saves you time and cost by allowing amplification of DNA directly from the source material. No DNA purification is needed. Direct PCR is suitable for various kinds of sample materials such as plant and animal tissues, blood, and FFPE tissue samples.

Direct PCR is based on Finnzymes’ unique PCR enzymes, Phusion® High-Fidelity and Phire® Hot Start DNA Polymerases. These polymerases are exceptionally tolerant of many PCR inhibitors. To achieve the shortest possible protocols, combine the Direct PCR approach with Finnzymes’ Piko® Thermal Cyclers and UTW® reaction vessels.

See the latest results, application notes and product updates at www.finnzymes.com/directpcr

NEW!
Optimized kits available:
Phire® Plant Direct PCR Kit for plant materials
Phire® Animal Tissue Direct PCR Kit for various animal tissues
Phusion® Blood Direct PCR Kit for blood

Try the Direct PCR Kits now with 30% discount!

*Phire Animal Tissue Direct PCR Kit available in autumn 2009.

Finnzymes’ Direct PCR approach saves you time and cost by allowing amplification of DNA directly from the source material. No DNA purification is needed. Direct PCR is suitable for various kinds of sample materials such as plant and animal tissues, blood, and FFPE tissue samples.

Direct PCR is based on Finnzymes’ unique PCR enzymes, Phusion® High-Fidelity and Phire® Hot Start DNA Polymerases. These polymerases are exceptionally tolerant of many PCR inhibitors. To achieve the shortest possible protocols, combine the Direct PCR approach with Finnzymes’ Piko® Thermal Cyclers and UTW® reaction vessels.

See the latest results, application notes and product updates at www.finnzymes.com/directpcr

NEW!
Optimized kits available:
Phire® Plant Direct PCR Kit for plant materials
Phire® Animal Tissue Direct PCR Kit for various animal tissues
Phusion® Blood Direct PCR Kit for blood

Try the Direct PCR Kits now with 30% discount!

*Phire Animal Tissue Direct PCR Kit available in autumn 2009.