ON THE COVER
Sparkes et al. (pages 3937–3949) use a novel analytical tool to investigate the relative roles of actin, microtubules, myosin, and Golgi bodies on the form and movement of the endoplasmic reticulum (ER) in tobacco leaf epidermal cells. The images show the persistency of microtubules (magenta, top two panels) or cisternae (magenta, bottom two panels) over 80 s of examination. The left panels show all tubules and cisternal structures; the right panels show only those tubules or cisternae large enough and persistent enough for counting. Cyan in all panels shows an ER marker linked to green fluorescent protein. The authors conclude that it is the actin myofilaments and, to some extent, certain myosins, and not microtubules, that drive changes in the form of the ER network and directionality of flow within the ER membrane.

EDITORIAL
ASPB Journals Launch CrossCheck
Cathie Martin and Don Ort 3715

IN BRIEF
Functional and Phylogenetic Analysis of the Glutathione Transferase Gene Family in Poplar
Jennifer Mach and David Baum 3716

Dynamic Histone Modifications in Light-Regulated Gene Expression
Nancy R. Hofmann 3717

PERSPECTIVE: SPECIAL SERIES ON LARGE-SCALE BIOLOGY
PLAZA: A Comparative Genomics Resource to Study Gene and Genome Evolution in Plants
Sebastian Proost, Michiel Van Bel, Lieven Sterck, Kenny Billiau, Thomas Van Parys, Yves Van de Peer, and Klaas Vandepoele 3718

RESEARCH ARTICLES
Dynamic Landscapes of Four Histone Modifications during Deetiolation in Arabidopsis
Jean-Benoit F. Charron, Hang He, Axel A. Elling, and Xing Wang Deng 3732

Extensive Functional Diversification of the Populus Glutathione S-Transferase Supergene Family
Ting Lan, Zhi-Ling Yang, Xue Yang, Yan-Jing Liu, Xiao-Ru Wang, and Qing-Yin Zeng 3749

Antagonistic HLH/bHLH Transcription Factors Mediate Brassinosteroid Regulation of Cell Elongation and Plant Development in Rice and Arabidopsis
Li-Ying Zhang, Ming-Yi Bai, Jinxia Wu, Jia-Ying Zhu, Hao Wang, Zhiguo Zhang, Wenfei Wang, Yu Sun, Jun Zhao, Xuehui Sun, Hongjuan Yang, Yunyuan Xu, Soo-Hwan Kim, Shozo Fujioka, Wen-Hui Lin, Kang Chong, Tiegang Lu, and Zhi-Yong Wang 3767

Regulation of Arabidopsis Brassinosteroid Signaling by Atypical Basic Helix-Loop-Helix Proteins
Hao Wang, Yongyou Zhu, Shozo Fujioka, Tadao Asami, Jiayang Li, and Jianming Li 3781

Mutations of a 1,6 Mannosyltransferase Inhibit Endoplasmic Reticulum–Associated Degradation of Defective Brassinosteroid Receptors in Arabidopsis
Zhi Hong, Hua Jin, Anne-Catherine Fitchette, Yang Xia, Andrew M. Monk, Loic Faye, and Jianming Li 3792
Ethylene Interacts with Abscisic Acid to Regulate Endosperm Rupture during Germination: A Comparative Approach Using *Lepidium sativum* and *Arabidopsis thaliana* 3803

Ada Linkies, Kerstin Müller, Karl Morris, Veronika Turečková, Meike Wenk, Cassandra S.C. Cadman, Françoise Corbineau, Miroslav Stmad, James R. Lynn, William E. Finch-Savage, and Gerhard Leubner-Metzger

Auxin Response in *Arabidopsis* under Cold Stress: Underlying Molecular Mechanisms 3823

Kyohei Shibasaki, Matsuio Uemura, Seiji Tsurumi, and Abdur Rahaman

PIN Auxin Efflux Carrier Polarity Is Regulated by PINOID Kinase-Mediated Recruitment into GNOM-Independent Trafficking in *Arabidopsis* 3839

Jürgen Kleine-Vehn, Fang Huang, Satoshi Naramoto, Jing Zhang, Marta Michniewicz, Remko Offringa, and Jifi Friml

Class I α-Mannosidases Are Required for N-Glycan Processing and Root Development in *Arabidopsis thaliana* 3850

Arabidopsis Formin3 Directs the Formation of Actin Cables and Polarized Growth in Pollen Tubes 3868

Jianrong Ye, Yiyun Zheng, An Yan, Naizhi Chen, Zhangkui Wang, Shanjin Huang, and Zhenbiao Yang

DGAT1 and PDAT1 Acyltransferases Have Overlapping Functions in *Arabidopsis* Triacylglycerol Biosynthesis and Are Essential for Normal Pollen and Seed Development 3885

Meng Zhang, Jillian Fan, David C. Taylor, and John B. Ohlrogge

A Gain-of-Function Mutation of *Arabidopsis* Lipid Transfer Protein 5 Disturbs Pollen Tube Tip Growth and Fertilization 3902

Keun Chae, Chris A. Kieslich, Dimitrios Morikis, Seung-Chul Kim, and Elizabeth M. Lord

Two Types of Meiotic Crossovers Coexist in Maize 3915

Matthieu Falque, Lorinda K. Anderson, Stephen M. Stack, Franck Gauthier, and Olivier C. Martin

Cell Type–Specific Chromatin Decondensation of a Metabolic Gene Cluster in Oats 3926

Eva Wegel, Rachil Koumproglou, Peter Shaw, and Anne Osbourn

Movement and Remodeling of the Endoplasmic Reticulum in Nondividing Cells of Tobacco Leaves 3937

I. Sparkes, J. Runions, C. Hawes, and L. Griffing

Phosphorylation of Photosystem II Controls Functional Macroscopic Folding of Photosynthetic Membranes in *Arabidopsis* 3950

Rikard Fristedt, Adrian Willig, Pontus Granath, Michèle Crévecoeur, Jean-David Rochaix, and Alexander V. Vener

Arabidopsis Tic62 and Ferredoxin-NADP(H) Oxidoreductase Form Light-Regulated Complexes That Are Integrated into the Chloroplast Redox Poise 3965

Heat Shock Protein Cognate 70-4 and an E3 Ubiquitin Ligase, CHIP, Mediate Plastid-Destined Precursor Degradation through the Ubiquitin-26S Proteasome System in *Arabidopsis* 3984

Sookjin Lee, Dong Wook Lee, Yongjik Lee, Ulrike Mayer, York-Dieter Stierhof, Sumin Lee, Gerd Jürgens, and Inhwan Hwang

The Small Subunit of Snapdragon Geranyl Diphosphate Synthase Modifies the Chain Length Specificity of Tobacco Geranylgeranyl Diphosphate Synthase in Planta 4002

Irina Orlova, Dinesh A. Nageegowda, Christine M. Kish, Michael Gutensohn, Hiroshi Maeda, Marina Varbanova, Eyal Fridman, Shinjiro Yamaguchi, Atsushi Hanada, Yuji Kamiya, Alexander Krchevsky, Vitaly Citovsky, Eran Pichersky, and Natalia Dudareva
A Root-Expressed Magnesium Transporter of the MRS2/MGT Gene Family in Arabidopsis thaliana Allows for Growth in Low-Mg²⁺ Environments

Michael Gebert, Karoline Meschenmoser, Soňa Svidová, Julian Weghuber, Rudolf Schweyen, Karolin Eifler, Henning Lenz, Katrin Weyand, and Volker Knoop

Orthologs of the Class A4 Heat Shock Transcription Factor HsfA4a Confer Cadmium Tolerance in Wheat and Rice

Donghwan Shim, Jae-Ung Hwang, Joohyun Lee, Sicul Lee, Yunjung Choi, Gynheung An, Enrico Martinoia, and Youngsook Lee

Quantitative Proteomics of the Tonoplast Reveals a Role for Glycolytic Enzymes in Salt Tolerance

Bronwyn J. Barkla, Rosario Vera-Estrella, Marcela Hernández-Coronado, and Omar Pantoja

CORRECTION

Some figures in this article are displayed in color online but in black and white in the print edition.

Online version contains Web-only data.

Open Access articles can be viewed online without a subscription.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>eTOCs</td>
<td>Sign up for eTOCs at: http://www.plantcell.org/cgi/alerts/ctmain</td>
</tr>
<tr>
<td>CiteTrack Alerts</td>
<td>Sign up for CiteTrack Alerts at: http://www.plantcell.org/cgi/alerts/ctmain</td>
</tr>
<tr>
<td>Subscription Information</td>
<td>Subscription Information for The Plant Cell and Plant Physiology is available at: http://www.aspbo.org/publications/subscriptions.cfm</td>
</tr>
</tbody>
</table>