ON THE COVER

Rice leaf development is important for photosynthesis and, hence, grain yield. Zhang et al. (pages 719–735) show that SHALLOT-LIKE1 (SLL1), a SHAQKYF class MYB family transcription factor belonging to the KANADI family, modulates leaf abaxial cell development and sustains the abaxial characteristics during leaf development. SLL1 deficiency leads to defective programmed cell death of abaxial mesophyll cells and results in increased chlorophyll and photosynthesis, which may facilitate attempts to increase the photosynthetic capacity of rice. The cover image shows the defective sclerenchymatous cells on the abaxial side of sll1-1 leaves resulting in a broader distribution of mesophyll cells.

IN BRIEF

CAMTA Proteins: A Direct Link between Calcium Signals and Cold Acclimation? 697
Nancy A. Eckardt

Opposites Attract: Some Phytochromes Do Not Form Homodimers 698
Nancy R. Hofmann

Uridine Ribohydrolase and the Balance between Nucleotide Degradation and Salvage 699
Jennifer Mach

A New Chlorophyll Degradation Pathway 700
Nancy A. Eckardt

RESEARCH ARTICLES

A Single Vegetative Actin Isovariant Overexpressed under the Control of Multiple Regulatory Sequences Is Sufficient for Normal Arabidopsis Development 701
Muthugapatti K. Kandasamy, Elizabeth C. McKinney, and Richard B. Meagher

SHALLOT-LIKE1 Is a KANADI Transcription Factor That Modulates Rice Leaf Rolling by Regulating Leaf Abaxial Cell Development 719
Guang-Heng Zhang, Qian Xu, Xu-Dong Zhu, Qian Qian, and Hong-Wei Xue

The WUSCHEL-Related Homeobox Gene WOX11 Is Required to Activate Shoot-Borne Crown Root Development in Rice 736
Yu Zhao, Yongfeng Hu, Mingqiu Dai, Limin Huang, and Dao-Xiu Zhou

The ESCRT-Related CHMP1A and B Proteins Mediate Multivesicular Body Sorting of Auxin Carriers in Arabidopsis and Are Required for Plant Development 749
Christoph Spitzer, Francisca C. Reyes, Rafael Buono, Marek K. Sliwinski, Thomas J. Haas, and Marisa S. Otegui

Pheophytin Pheophorbide Hydrolase (Pheophytinase) Is Involved in Chlorophyll Breakdown during Leaf Senescence in Arabidopsis 767
Silvia Schelbert, Sylvain Aubry, Bo Burla, Birgit Agne, Felix Kessler, Karin Krupinska, and Stefan Hörttensteiner

Obligate Heterodimerization of Arabidopsis Phytochromes C and E and Interaction with the PIF3 Basic Helix-Loop-Helix Transcription Factor 786
Ted Clack, Ahmed Shokry, Matt Moffet, Peng Liu, Michael Faul, and Robert A. Sharrock
Light Regulation of Gibberellin Biosynthesis in Pea Is Mediated through the COP1/HY5 Pathway

James L. Weller, Valérie Hecht, Jacqueline K. Vander Schoor, Sandra E. Davidson, and John J. Ross

Suppression of the Barley uroporphyrinogen III synthase Gene by a Ds Activation Tagging Element Generates Developmental Photosensitivity

Michael A. Ayliffe, Anthony Agostino, Bryan C. Clarke, Robert Furbank, Susanne von Caemmerer, and Anthony J. Pryor

Tissue- and Expression Level–Specific Chromatin Looping at Maize b1 Epialleles

Marieke Louwers, Rechien Bader, Max Haring, Roel van Driel, Wouter de Laat, and Maike Stam

Statolith Sedimentation Kinetics and Force Transduction to the Cortical Endoplasmic Reticulum in Gravity-Sensing Arabidopsis Columella Cells

Guenther Leitz, Byung-Ho Kang, Monica E.A. Schoenwaelder, and L. Andrew Staehelin

Characterization of Solanum tuberosum Multicystatin and Its Structural comparison with Other Cystatins

Mark S. Nissen, G.N. Mohan Kumar, Buhyun Youn, D. Benjamin Knowles, Ka Sum Lam, W. Jordan Ballinger, N. Richard Knowles, and ChulHee Kang

Uridine-Ribohydrolase Is a Key Regulator in the Uridine Degradation Pathway of Arabidopsis


A Chloroplastic UDP-Glucose Pyrophosphorylase from Arabidopsis is the Committed Enzyme for the First Step of Sulfolipid Biosynthesis


Disruption of Adenosine-5’-Phosphosulfate Kinase in Arabidopsis Reduces Levels of Sulfated Secondary Metabolites

Sarah G. Mugford, Naoko Yoshimoto, Michael Reichelt, Markus Wirtz, Lionel Hill, Sam T. Mugford, Yoshimi Nakazato, Masaaki Noji, Hideki Takahashi, Robert Kramell, Tamara Gigolashvili, Ulf-Ingo Flügge, Claus Wasternack, Jonathan Gershenzon, Rüdiger Heil, Kazuki Saito, and Stanislav Kopriva

Two Chlamydomonas CTR Copper Transporters with a Novel Cys-Met Motif Are Localized to the Plasma Membrane and Function in Copper Assimilation

M. Dudley Page, Janette Kropat, Patrice P. Peck, and Sabeeha S. Merchant

Mitogen-Activated Protein Kinases 3 and 6 Are Required for Full Priming of Stress Responses in Arabidopsis thaliana

Gerold J.M. Beckers, Michal Jaskiewicz, Yidong Liu, William R. Underwood, Sheng Yang He, Shuqun Zhang, and Uwe Conrath

Methyl Salicylate Production and Jasmonate Signaling Are Not Essential for Systemic Acquired Resistance in Arabidopsis

Elham Attaran, Tatiana E. Zeier, Thomas Griebel, and Jürgen Zeier

Roles for Arabidopsis CAMTA Transcription Factors in Cold-Regulated Gene Expression and Freezing Tolerance

Colleen J. Doherty, Heather A. Van Buskirk, Susan J. Myers, and Michael F. Thomashow

The Gene Controlling the Indole Glucosinolate Modifier Quantitative Trait Locus Alters Indole Glucosinolate Structures and Aphid Resistance in Arabidopsis

Marina Pfalz, Heiko Vogel, and Juergen Kroymann
HISTONE MONOUBIQUITINATION1 Interacts with a Subunit of the Mediator Complex and Regulates Defense against Necrotrophic Fungal Pathogens in Arabidopsis

Rahul Dhawan, Hongli Luo, Andrea Maria Foerster, Synan AbuQamar, Hai-Ning Du, Scott D. Briggs, Ortrun Mittelsten Scheid, and Tesfaye Mengiste

CORRECTIONS


Some figures in this article are displayed in color online but in black and white in the print edition.

Online version contains Web-only data.

Open Access articles can be viewed online without a subscription.