Abscisic Acid Represses Growth of the Arabidopsis Embryonic Axis after Germination by Enhancing Auxin Signaling

Christophe Belin,a Christian Megies,a Eva Hauserová,b,c and Luis Lopez-Molinaa,1

a Département de Biologie Végétale, Université de Genève, 1211 Genève 4, Switzerland
b Laboratory of Growth Regulators, Faculty of Science, Palacky University, CZ-78371 Olomouc, Czech Republic
c Swedish University of Agricultural Science, Umea Plant Science Center, Department of Forest Genetics and Plant Physiology, Umea 901 83, Sweden

Under unfavorable environmental conditions, the stress phytohormone ABA inhibits the developmental transition from an embryo in a dry seed into a young seedling. We developed a genetic screen to isolate Arabidopsis thaliana mutants whose early seedling development is resistant to ABA. Here, we report the identification of a recessive mutation in AUXIN RESISTANT1 (AUX1), encoding a cellular auxin influx carrier. Although auxin is a major morphogenesis hormone in plants, little is known about ABA-auxin interactions during early seedling growth. We show that aux1 and pin2 mutants are insensitive to ABA-dependent repression of embryonic axis (hypocotyl and radicle) elongation. Genetic and physiological experiments show that this involves auxin transport to the embryonic axis elongation zone, where ABA enhances the activity of an auxin-responsive promoter. We propose that ABA represses embryonic axis elongation by potentiating auxin signaling in its elongation zone. This repression of the AUXIN INDUCIBLE (Aux/IAA) gene AXR2/IAA7, encoding a key component of ABA- and auxin-dependent responses during postgerminative growth.

INTRODUCTION

Early seedling development is a delicate phase in the plant life cycle during which the highly protected embryonic state in the mature seed is abandoned in favor of the fragile and autotrophic seedling state. In after-ripened (i.e., nondormant) Arabidopsis thaliana seeds, imbibition by water is sufficient to trigger germination. It initiates a series of visible developmental events, first that of testa rupture followed by concomitant endosperm rupture and radicle protrusion (completion of seed germination per se; Müller et al., 2006; reviewed in Bewley, 1997; Kucera et al., 2005; Holdsworth et al., 2008), further embryonic axis elongation, and finally cotyledon expansion and greening, referred to as early seedling growth distinct from germination (Müller et al., 2006; reviewed in Finch-Savage and Leubner-Metzger, 2006). Under normal conditions, these steps are completed within 48 h after seed imbibition and they do not take place without de novo biosynthesis of the phytohormone gibberellic acid (GA) (reviewed in Debeaujon and Koornneef, 2000; Finch-Savage and Leubner-Metzger, 2006). Moreover, upon seed imbibition, a drastic downregulation of embryogenesis gene expression is observed, such as that of transcription factors ABA-insensitive3 (ABI3) and ABI5 as well as that of osmotolerance genes (Parcy et al., 1994; Lopez-Molina et al., 2001; Lopez-Molina et al., 2002). However, within the first 2 d upon imbibition, a sudden osmotic stress or exposure to the stress hormone abscisic acid (ABA) can delay or block any of the developmental transition steps described above (Lopez-Molina et al., 2001). Growth arrest is also associated with reinduction of ABI3 and ABI5 expression, which confers osmotolerance to the embryo. Here, we investigate seed germination and postgermination growth (i.e., the steps prior to and after endosperm rupture, respectively). This study focuses on ABA-dependent repression of embryonic axis elongation, which begins prior to endosperm rupture and continues thereafter. Below, embryonic axis refers to the mature embryonic axis present in dry seeds, and embryonic axis elongation refers to the elongation of the mature embryonic axis that occurs after seed germination (i.e., after endosperm rupture).

The key roles played by GA and ABA in seed germination and early seedling development have long been established (reviewed in Olszewski et al., 2002; Nambara and Marion-Poll, 2005), and the coordination of GA- and ABA-dependent signals is starting to be unveiled (Piskurewicz et al., 2008, 2009). Other phytohormones influence the seed-to-seedling transition, but how they participate is poorly understood (Clouse, 1996; Beaudoin et al., 2000; Ghasssemian et al., 2000; Steber and McCourt, 2001; Riefler et al., 2006). Auxin is a key morphogenesis hormone involved in numerous developmental programs in plants, where it notably contributes to the regulation of cell elongation (reviewed in Fleming, 2006; Teale et al., 2006). During seed germination and early seedling growth, ABA severely inhibits embryonic axis elongation and cotyledon expansion, and it is therefore surprising that auxin- and ABA-dependent interactions have not been identified in this context.

Current models of auxin action emphasize the regulation of auxin transport in and out of cells and its effect on auxin signaling factors (reviewed in Fleming, 2006; Teale et al., 2006; Benjamins
and Scheres, 2008). Transport involves specific auxin carriers: PIN factors are transmembrane proteins essential for auxin efflux in cells, whereas AUX1/LAX factors are 11-transmembrane domain proteins facilitating auxin influx (reviewed in Kramer and Bennett, 2006; Kerr and Bennett, 2007). Intracellular auxin stimulates the activity of auxin response factors (ARFs), which are transcription factors regulating the expression of auxin target genes. ARFs are bound to Aux/IAA negative regulators, maintaining the former in an inactive state. The binding of auxin to TIR1-related F-box proteins enhances Aux/IAA destruction via the proteasome, thus liberating ARF activity (reviewed in Quint and Gray, 2006; Teale et al., 2006).

Interactions between auxin- and ABA-dependent responses have been described mainly in roots (Brady et al., 2003; Rock and Sun, 2005). Whole-genome expression studies showed that, during seed germination, AUX1, PIN2, and PIN7 mRNAs are up- and downregulated in response to GA and ABA, respectively (Ogawa et al., 2003; Nakabayashi et al., 2005; Penfield et al., 2006). Two independent reports using a DRS:β-glucuronidase (GUS) auxin signaling reporter suggested that auxin-dependent responses increase during embryogenesis and remain present in germinating seeds (Ni et al., 2001; Liu et al., 2007). Moreover, the study of the regulation of ARF10 mRNA stability by miR160 miRNA implicated ARF10 in modulating ABA responsiveness during seed germination (Liu et al., 2007). These reports indicate that crosstalk between ABA- and auxin-dependent responses takes place during seed germination and early seedling development in which ABA-dependent repression of growth is poten-
tiated by auxin.

In this study, we further explored ABA- and auxin-dependent responses during seed germination and postgermination growth after isolating an aux1 mutant, affected in auxin transport, in a new genetic screen for mutants deficient in ABA responses. aux1 was identified as a recessive locus displaying resistance to ABA during the seed-to-seedling developmental transition. We show that AUX1 is specifically required for ABA-dependent repression of embryonic axis elongation. This process requires specific auxin transport to the peripheral elongation zone via AUX1 and PIN2, which are localized in the root cap and the elongation zone. In cells of those regions, ABA enhances auxin responses by downregulating AXR2/IAA7 expression in an auxin-independent manner. Thus, AXR2/IAA7 is at the juncture of an ABA and auxin crosstalk by acting as a negative regulator in both hormonal pathways.

RESULTS

Identification of aux1 as a Previously Unknown ABA-Insensitive Locus

Previous screens to identify mutants displaying resistance to ABA during seed germination typically used high ABA concentrations (3 to 10 μM) to ensure efficient repression of seed germination and early seedling growth (Koomneef et al., 1984; Finkelstein, 1994; Lopez-Molina and Chua, 2000). This led to the identification of a relatively small number of ABI loci, notably the downstream ABA response factor ABI5, which represses endo-
sperm rupture (Finkelstein and Lynch, 2000; Lopez-Molina and Chua, 2000). We sought to identify novel ABI loci in a transgenic context in which ABI5 accumulation is constitutive. This has the advantage of (1) avoiding the recovery of mutations in ABI5 or in genes encoding positive regulators of ABI5 expression (such as ABI3) and (2) lowering the ABA concentrations used in the screen (0.5 μM). The latter is possible because ABI5 overexpression delays germination and subsequent growth and thus facilitates the identification of mutants with altered responses to ABA (Lopez-Molina et al., 2001).

An abi5-4/Pro35S:ABI5 transgenic line was mutagenized, which allowed us to identify mutants displaying resistance to ABA during the seed to seedling transition (see details in Methods). We focus here on a particular mutant phenotype initially called long root (lrt) (see Supplemental Figure 1A online). Sequencing analysis of the Pro35S:ABI5 transgene and protein gel blot analysis of ABI5 protein levels showed that transgenic ABI5 expression is not affected in lrt mutants (see Supplemental Figure 1B online). lrt seeds developed similarly to the parental line seeds under normal conditions but displayed accelerated growth in the presence of ABA (see Supplemental Figure 1A online). Interest-
lng, lrt mutants also displayed an agravitropic root phenotype.

The lrt locus was mapped to a 600-kb interval ~4 Mb from the bottom end of chromosome 2 (see Supplemental Figure 1C online). This interval contains AUX1, encoding an auxin influx facilitator with 11 transmembrane domains (Bennett et al., 1996; Marchant et al., 1999; Swarup et al., 2004; Yang et al., 2006). Given that aux1 mutants display agravitropism, we postulated that lrt might be an aux1 allele. DNA sequencing of the AUX1 coding sequences in lrt revealed a G-to-A substitution in the fourth exon replacing a TRP codon with a STOP (position 196; see Supplemental Figure 1D online). Moreover, available recessive alleles of aux1 (aux1-7, aux1-22, and aux1-21; see Supplemental Figure 1D online) displayed clear resistance to ABA during the seed to seedling developmental transition (Figure 1). Taken together, these data show that lrt is a previously undiscovered aux1 allele, which we have renamed aux1-301 to reflect its molecular identity. Below, we use previously reported aux1 alleles to further describe the role of AUX1 in the ABA-dependent repression taking place during the seed-to-seedling transition.

AUX1 Is Involved in ABA-Dependent Repression of Embryonic Axis Elongation during Early Seedling Development

ABA inhibits, albeit with different efficiencies, the completion of all the steps of seed germination and early seedling development, which chronologically involve testa rupture, endosperm rupture, embryonic axis elongation, cotyledon expansion, and greening. Testa and endosperm rupture responses to ABA were similar between wild-type and aux1 seeds, although endosperm rupture in aux1 appeared to be mildly resistant to ABA, suggesting that aux1 resistance to ABA is mostly postgerminative (see Supplemental Figure 2 online). Thus, we wished to assess directly embryonic axis elongation in response to ABA by performing transfer experiments upon endosperm rupture (i.e., axis emergence out of testa and endosperm layers). This has the advantage of eliminating the mechanical constraint imposed by an unruptured endosperm layer.
In this assay, ABA markedly repressed wild-type axis elongation (Figure 2). By contrast, the elongation of aux1-21 embryonic axis occurred in virtually the same manner in presence or absence of ABA. aux1 mutants elongated their embryonic axis slightly faster relative to the wild type in the absence of ABA (Figure 2).

These data show that AUX1 is necessary to repress embryonic axis elongation in response to ABA. In this context, faster axis elongation in aux1 embryos in the absence of ABA may reflect their resistance to the endogenous ABA pools present in germinating seeds (Piskurewicz et al., 2008). We also noticed that cotyledon expansion and greening were also resistant to ABA in aux1 embryos (Figures 1C and 1D). Since this may indirectly result from faster embryonic axis growth in aux1 embryos on ABA, we focused our studies to the repression of embryonic axis elongation by ABA.

AUX1 Functions in the Root Cap to Mediate ABA-Dependent Responses

We used a previously described AUX1 promoter transgenic line (WT/ProAUX1:AUX1-YFP; Swarup et al., 2004) to locate AUX1-yellow fluorescent protein (YFP) fusion protein during early development (Figure 3). Under normal conditions and prior to endosperm rupture (i.e., 32 h after seed imbibition), AUX1-YFP could be detected only in the plasma membrane of lateral root cap and columella cells. Thereafter, during axis elongation, AUX1-YFP fluorescence spread to the plasma membrane of epidermal cells. Upon completion of axis elongation, AUX1-YFP could be detected in the plasma membrane of the root cap, the protophloem, and all epidermal tissues of both shoots and roots, consistent with previous reports examining AUX1-YFP fluorescence in seedlings (Dharmasiri et al., 2006). AUX1-YFP fluorescence in the plasma membrane of root cap cells did not show obvious evidence of polarization (Figure 3B; see Discussion). ABA treatment blocked axis elongation and did not significantly alter the pattern of AUX1-YFP localization, which was maintained in the plasma membrane of the lateral root cap and columella cells (see Supplemental Figure 3A online).

RNA gel blot analysis showed that AUX1 mRNA, undetected in dry seeds, could be detected 24 h after seed imbibition (i.e., before endosperm rupture) in wild-type seeds under normal imbibition conditions (see Supplemental Figure 3B online). Thereafter, AUX1 mRNA levels increased, consistent with the observed spread of AUX1-YFP expression along the axis. AUX1 mRNA levels remained low in presence of ABA, similar to those found 24 h after seed imbibition, consistent with the restricted AUX1-YFP localization to the lateral root cap and columella cells (see Supplemental Figure 3B online).

These data indicate that AUX1 is localized mainly in the root cap at the time of endosperm rupture and thereafter during axis elongation. Moreover, ABA appears to limit AUX1 expression rather than altering AUX1 localization.
Auxin- and ABA-Dependent Responses Coenhance Each Other to Repress Embryonic Axis Elongation

AUX1 was previously described as an auxin influx facilitator; therefore, we wanted to explore whether auxin is involved in the ABA-dependent repression of embryonic axis elongation. 1-Naphthoxyacetic acid (NOA), a specific inhibitor of auxin influx carriers (Parry et al., 2001), was used to characterize axis elongation in the absence or presence of ABA. Repression of embryonic axis elongation by ABA was reduced in wild-type plants in the presence of NOA (Figure 4A). By contrast, exogenous application of auxin repressed wild-type embryonic axis elongation (Figure 4B). Moreover, 1-naphthalene acetic acid (NAA), a lipophilic synthetic form of auxin diffusible through cell membranes, repressed aux1 embryonic axis elongation, but 2,4-D, which requires auxin influx carrier activity to penetrate into cells, did not, consistent with previous reports (Figure 4B).

Figure 2. aux1-21 Embryonic Axis Elongation Is Insensitive to ABA.

(A) Diagrams and representative pictures showing embryonic axis elongation (Δl) upon endosperm rupture (ER) of the wild type (Col) and aux1-21 (aux1). Seeds were imbibed on normal medium (MS) and transferred at t = 0 h (time of endosperm rupture) to either MS or MS supplemented with 2 μM ABA (ABA).

(B) Elongation (Δl) quantification of the experiment described in (A). This graph shows the axis elongation of Col (black bars) and aux1-21 (light-gray bars) between t = 0 h and 3 or 10 h, as indicated, on MS or 2 μM ABA. Standard deviations are shown (n ≥ 20). Asterisks indicate a significant difference between the wild type and the mutant, based on a two-tailed t test (P < 0.01).

Auxin- and ABA-Dependent Responses Coenhance Each Other to Repress Embryonic Axis Elongation

Confocal microscopy imaging of an AUX1-YFP fusion expressed under the control of the endogenous AUX1 promoter in Col background.

(A) Pictures of dissected embryos at 4 stages: 3 h prior to endosperm rupture (ER; i.e., 32 h after seed imbibition), ER (35 h after seed imbibition), and during the elongation of the embryonic axis (37 and 42 h).

(B) Magnified pictures of the lateral root cap area of intact germinating seeds at the time of ER (35 h) and during elongation of the embryonic axis (after ER). The arrow indicates testa autofluorescence.
Marchant et al., 1999). Taken together, these observations are consistent with the notion that auxin represses embryonic axis elongation during early seedling growth.

PIN factors are required for cellular auxin efflux (reviewed in Kramer and Bennett, 2006). We therefore studied the role of PIN factors in repressing axis elongation in response to ABA as well as their expression and localization during early seedling development. PIN2, PIN3, PIN4, and PIN7 gene expression was followed using previously described transgenic lines carrying PIN promoter fusions with the reporter genes GUS or green fluorescent protein (GFP).

PIN4 promoter activity could not be detected using the ProPIN4:GUS reporter line (see Supplemental Figure 4A online); moreover, wild-type and pin4-3 seeds displayed similar responses to ABA during the seed-to-seedling transition (see Supplemental Figure 4B online). This suggested that PIN4 does not play a significant role in mediating ABA responses during early seedling growth. Staining patterns obtained with ProPIN3:GUS and ProPIN7:GUS reporter lines indicated that PIN3 and PIN7 are both expressed in vascular tissues and the radicle tip, whereas PIN7 is expressed specifically in the peripheral tissues of the future hypocotyl (see Supplemental Figure 4A online). However both pin3-5 and pin7-2 mutants displayed normal repression of embryonic axis elongation in response to ABA (see Supplemental Figure 4B online). In the case of PIN2, we used a ProPIN2:PIN2-GFP line (Xu and Scheres, 2005), which showed that PIN2-GFP protein is present in the

Figure 4. Auxin Transport Is Necessary to Mediate ABA-Dependent Repression of Embryonic Axis Elongation.

(A) NOA treatment inhibits ABA-dependent repression of embryonic axis elongation. Graph representing the embryonic axis elongation rate of wild type (Col), with (light gray bars) or without 2 μM NOA (dark bars), either in the absence (MS) or presence of 0.5 μM ABA in the medium.

(B) Auxin represses embryonic axis elongation. Graph representing the embryonic axis elongation rate of Col (black bars) and aux1-21 (light-gray bars) grown on normal medium (MS) or medium supplemented with synthetic auxins 1 μM NAA or 0.5 μM 2,4-D, as indicated.

(C) PIN2 is localized in lateral root cap cells and elongating peripheral (epidermis and cortex) cells during germination. Confocal microscopy imaging of a PIN2-GFP fusion expressed under the control of the endogenous PIN2 promoter in eir1-1 (pin2) background. Whole-embryo pictures at three stages during the axis elongation after endosperm rupture (ER). The fourth picture shows a magnification of the area indicated by the square in the third picture. White arrows indicate testa autofluorescence, and green arrows indicate PIN2-GFP fluorescence.

(D) pin2 embryonic axis elongation is insensitive to ABA. Pictures show representative wild-type (Col) and pin2 (eir1-1) germinating seeds, 49 and 64 h after imbibition in presence of 0.5 μM ABA.

(E) Embryonic axis elongation rates in Col (black bars) and eir1-1 (light-gray bars) plants grown on normal medium (MS) or medium supplemented with 0.5 μM ABA, 1 μM NAA, or 0.5 μM 2,4-D, as indicated.

For (A), (B), and (E), the y axis represents the average embryonic axis elongation rate (μm·h⁻¹). Standard deviations are indicated (n ≥ 15). Asterisks indicate a significant difference between the wild type and the mutant, based on a two-tailed t test (P < 0.01).
epidermis and cortex of the elongation zone and is also detectable in the lateral root cap cells, although to a lower extent (Figure 4C). The PIN2-GFP fusion protein was polarly localized in the upper part of the plasma membrane of embryonic axis elongating cells (Figure 4C). Strikingly, pin2 (eir1-1 allele) axis elongation was markedly resistant to ABA, while otherwise being similar to that of the wild type under normal conditions (Figures 4D and 4E). The pin2 mutant was also resistant to NAA-induced repression of embryonic axis elongation but displayed a very mild insensitivity to 2,4-D, unlike aux1 mutants (Figure 4E). This is consistent with previous reports showing that NAA, but not 2,4-D, is efficiently transported through auxin efflux transporters and that pin2 insensitivity to NAA is much stronger than its insensitivity to 2,4-D for root growth and gravitropism in older plants (Delbarre et al., 1996; Müller et al., 1998).

Taken together, these observations strengthen the notion that auxin flows in the epidermis and cortex of the axis elongation zone are critical to repress elongation in response to ABA.

ABA Potentiates Auxin Responses without Increasing Overall Auxin Levels

We wished to distinguish whether auxin-mediated repression of axis elongation is the result of increased auxin levels or increased auxin-dependent responses.

To test whether ABA potentiates auxin signaling, we examined whether the combination of low auxin and low ABA concentrations synergistically repress axis elongation. For this purpose, we examined the effect of diffusible auxin (NAA) in an aux1 mutant genetic background where endogenous auxin flow is presumed to be drastically diminished. Titration experiments revealed that concentrations up to 0.1 μM NAA and 0.2 μM ABA did not affect aux1 axis elongation per se (Figures 5A and 5B). However, in combination, 0.05 μM NAA and 0.05 μM ABA markedly repressed aux1 axis elongation (Figure 5A). These observations are consistent with the notion that ABA locally enhances auxin-dependent repression of axis elongation.

To further explore the role of auxin in ABA-dependent repression of embryonic axis growth, we monitored embryonic axis elongation in abi1 mutants in response to auxin. We reasoned that if ABA represses embryonic axis elongation solely by increasing auxin levels, then axis elongation in abi1 mutants would be as sensitive to auxin as it is in wild-type plants since, in this view, auxin acts as the final downstream parameter determining the rate of axis elongation. By contrast, if ABA potentiates auxin signaling pathways, as suggested above, one may expect auxin signaling pathways to be repressed in abi1 mutants. Thus, exogenous auxin application should induce weaker repression of embryonic axis elongation in abi1 mutants relative to wild-type plants. Consistent with this hypothesis, we indeed observed auxin (NAA and 2,4-D) insensitivity at the level of embryonic axis elongation in abid-1 and abid-3 mutants (Figure 5C). No striking insensitivity was observed in the weak abid3-9 allele (Nambara et al., 2002).

To further characterize the interaction between auxin- and ABA-dependent signals, we used a WT/ProIAA2:GUS line carrying the promoter sequence of the auxin-responsive gene IAA2 fused to the GUS reporter (Swarup et al., 2001).

GUS staining of a WT/ProIAA2:GUS line showed that the IAA2 promoter is active mainly in the vascular tissues and lateral root cap during embryonic axis elongation under normal conditions (Figure 6A). By contrast, blue staining showed that IAA2 promoter activity was strongly activated in peripheral tissues (epidermis and/or cortex) of the elongation zone upon transfer to ABA, which also efficiently repressed embryonic axis elongation (Figure 6A). By contrast, no blue staining could be detected in the epidermis or cortex in response to ABA in an aux1 genetic background (aux1/ProIAA2:GUS reporter line) where it could be detected only in the vascular tissues and the radicle tip.
irrespective of the presence or absence of ABA (Figure 6B). Taken together, these data strongly suggest that ABA-dependent activation of the IAA2 promoter in peripheral tissues of the elongation zone involves auxin signals that are elicited in response to ABA. They also indicate that activation of IAA2 expression by ABA requires auxin transport through AUX1.

Stimulation of ProIAA2:GUS activity in response to ABA (Figure 6A) could be due to an increase of auxin synthesis, an activation of auxin signaling, or both. We measured auxin levels (see Methods) in whole embryos of ProIAA2:GUS reporter lines upon endosperm rupture and thereafter, after transfer to a medium with or without ABA (2 μM). Indole-3-acetic acid (IAA) levels were similar between dry seeds and seeds harvested 36 h after their imbibition (i.e., at the time of endosperm rupture). Thereafter, embryonic axis elongation ensued and IAA levels slowly decreased in the absence of ABA (measured 3 and 10 h after endosperm rupture [t = 0 h]; Figure 6C). The presence of ABA upon transfer did not prevent the decrease in IAA levels (Figure 6C), although it prevented embryonic axis elongation, and further development was arrested or strongly delayed (Figure 6A). The absence of ABI5 (as in abi5-3 mutants) did not appear to alter auxin levels markedly relative to the wild type (Figure 6D). The data further support the notion that auxin levels decay upon wild-type seed imbibition irrespective of the absence or the presence of ABA (Figure 6D).

Taken together, these observations support the view that ABA potentiates auxin signaling rather than altering auxin levels to repress embryonic axis elongation.

AXR2/IAA7 and AXR3/IAA17 Inhibit ABA- and Auxin-Dependent Repression of Embryonic Axis Growth

We sought to identify auxin signaling components mediating ABA-dependent repression of embryonic axis elongation. In the current view of auxin signaling, auxin promotes degradation of
Aux/IAA negative regulators through binding to TIR1-related F-box proteins, which in turn frees ARFs that regulate the expression of auxin-responsive genes (reviewed in Quint and Gray, 2006; Teale et al., 2006). Hence, we investigated responses to ABA during the seed-to-seedling transition of mutants affected in TIR1, TIR1-related (AFB), Aux/IAA, and ARF genes (see Supplemental Table 1 online).

All the mutants affected in TIR1 and TIR1-related F-box genes (tir1-1, afb1-1, afb2-1, and afb3-1) displayed normal repression of embryonic axis elongation in response to ABA. Similarly, mutant seeds for the more distantly related F-box genes AFB4 and AFB5 did not display large alterations in their ABA responses. Normal responses in single F-box mutations could be due to F-box gene redundancy in ABA-dependent repression of embryonic axis elongation, or, alternatively, other F-box proteins could be implicated. We were unable to explore responses to ABA in multiple mutant combinations of tir1-1 and other afb mutant alleles (afb1-1, afb2-1, and afb3-1) because they are present in different ecotypes, which naturally display different responses to ABA during the seed to seedling transition.

To explore further the role of TIR1/AFB F-box proteins in the ABA-mediated repression of embryonic axis elongation, we examined the effect of two anti-auxin probes on ABA sensitivity. These synthetic auxin antagonists were obtained by adding different chains to the α-position of IAA. BH-IAA (α-(tert-butoxycarbonylamino)hexyl)-IAA was previously reported as the most efficient anti-auxin compound among a series of α-alkyl derivatives (Hayashi et al., 2008b), whereas PEO-IAA (α-(phenyl ethyl)-one)-IAA is a new compound, displaying an even more efficient anti-auxin activity (Hayashi et al., 2008a). The IAA moiety of BH-IAA has been shown to be located in the auxin binding pocket of TIR1 in the same way as natural IAA, whereas the alkyl chain is directed in the Aux/IAA binding cavity, thus preventing access of the domain II Aux/IAA degron to this cavity (Hayashi et al., 2008b). The results shown in Figure 7A show that BH-IAA and PEO-IAA are able to reduce the sensitivity of embryonic axis elongation to ABA. Indeed, ABA decreases the elongation rate of the embryonic axis by almost 80% in the absence of auxin antagonists, whereas it decreases the elongation rate only by 60 and 55% in the presence of 50 μM BH-IAA and PEO-IAA, respectively (P < 0.01). These results are consistent with the notion that the Aux/IAA degradation mediated by TIR1/AFB F-box proteins participates in the ABA- and auxin-dependent repression of embryonic axis elongation.

We also analyzed the early seedling growth responses to ABA of available insertion lines in all ARF genes as well as in previously characterized arf mutants (see Supplemental Table 1 online). None of these mutants exhibited altered responses to ABA during embryonic axis elongation. As above, this could suggest redundancy between members of this family, consistent with what is generally observed for ARF genes in other auxin-dependent responses (Wang et al., 2005; Weijers et al., 2005; reviewed in Guilfoyle and Hagen, 2007).

We next investigated early seedling growth responses to ABA in single mutants for Aux/IAA genes (see Supplemental Table 1 online), focusing in particular on those expressed during germination and that appear to be regulated by ABA (IAA16, IAA20, IAA26, IAA28, and IAA29) according to whole-genome gene expression profiling databases (Winter et al., 2007). All insertion lines in these genes exhibited normal embryonic axis growth sensitivity to ABA. Since normal responses in single Aux/IAA genes insertion lines could again reflect redundancy, we used dominant mutations in Aux/IAA genes, previously reported to exhibit altered hormonal responses in adult plants. axr2-1 and axr3-1 mutants carry point mutations preventing the degradation in response to auxin of IAA7 and IAA17, respectively, thus blocking auxin-dependent responses (Wilson et al., 1990; Timpite et al., 1994; Rouse et al., 1998; Nagpal et al., 2000). Strikingly, axr2-1 and axr3-1 exhibited strong insensitivity to ABA for embryonic axis elongation (Figures 7B and 7C). Moreover, axis elongation in axr2-1 and axr3-1 embryos was slightly more relative to the wild type in the absence of ABA also. We next analyzed two independent recessive loss-of-function axr2/iaa7 mutants. Strikingly, both axr2/iaa7 recessive alleles displayed hypersensitive repression of embryonic axis elongation in response to ABA (Figures 7B and 7D).

These observations indicate that AXR2/IAA7 (and possibly AXR3/IAA17) acts as a negative regulator in ABA signaling during repression of embryonic axis elongation. They also further substantiate the notion that ABA represses axis elongation by potentiating auxin signaling. Faster axr2-1 and axr3-1 mutant axis elongation under normal conditions may also reflect insensitive responses to endogenous ABA pools.

ABA Represses AXR2/IAA7 and AXR3/IAA17 Transcript Levels during Embryonic Axis Growth

Given the key role played by AXR2/IAA7, and possibly AXR3/IAA17, in ABA-dependent repression of embryonic axis growth, we examined their expression patterns during early seedling growth. Previous reports have shown that AXR2/IAA7 and AXR3/IAA17 expression in young seedlings is localized to the root, including its elongation zone (Tian et al., 2002; Knox et al., 2003; Muto et al., 2007; Tanimoto et al., 2007). We used ProAXR2/IAA7:GUS and ProAXR3/IAA17:GUS transgenic lines to monitor AXR2/IAA7 and AXR3/IAA17 promoter activity at the time of early axis elongation (Tian et al., 2002; Tanimoto et al., 2007). Strikingly, in the absence of ABA, blue staining in the embryo was restricted to the peripheral elongation zone (Figures 8A and 8B): (1) for AXR3/IAA17, a signal was detected during axis elongation (Figure 8B); (2) for AXR2/IAA7, the earliest time point of detection coincided with the emergence of the first root hairs (a developmental marker for the initiation of the root, collet, and hypocotyl) but prior to cotyledon expansion and greening (Figure 8A). No signal could be detected on ABA-arrested embryos and seedlings (see Supplemental Figure 5 online). These results are consistent with the notion that ABA reduces embryonic axis elongation by stimulating auxin signaling in the peripheral cells of the elongation zone through ABA-dependent repression of AXR2/IAA7 and perhaps AXR3/IAA17 expression.

To unveil the effect of ABA on AXR2/IAA7 and AXR3/IAA17 expression, we performed a time course of AXR2/IAA7 and AXR3/IAA17 mRNA expression during embryonic axis elongation, in the absence or presence of ABA. RNA gel blot analysis showed that AXR2/IAA7 and AXR3/IAA17 mRNA expression could be detected at the time of endosperm rupture in the
absence of ABA, increasing markedly thereafter (Figure 8C). By contrast, AXR2/IAA7 and AXR3/IAA17 mRNA expression did not increase in the presence of ABA and remained low at all time points examined (Figure 8C). This ABA-dependent repression of AXR2/IAA7 and AXR3/IAA17 mRNA expression could also be observed in aux1 mutants. Therefore, the combination of RNA gel blot analysis and promoter activity studies of both AXR2/IAA7 and AXR3/IAA17 suggests that the expression of AXR2/IAA7 and AXR3/IAA17 might be repressed by ABA in the epidermis of the elongation zone during embryonic axis growth.

Taken together, these observations support the model that ABA represses embryonic axis elongation by enhancing auxin signaling in the peripheral cells of the elongation zone through the repression of AXR2/IAA7 and AXR3/IAA17 expression (see model in Figure 9).

DISCUSSION

How the osmotic stress hormone ABA represses most of the complex developmental steps unfolding during the seed-to-seeding transition is incompletely understood. We unveiled the role of AUX1, encoding a cellular influx carrier of auxin, in the ABA-dependent inhibition of embryonic axis elongation during early seedling development. AUX1 was identified after the positional cloning of aux1-301/lrt, a recessive Arabidopsis locus in chromosome 2, that we isolated in a genetic screen to identify Arabidopsis mutants with altered early seedling growth responses to ABA. So far, few mutant loci have been identified that confer resistance to ABA during seed germination and early seedling development. The identification of the aux1-301 mutant validates the use of abi5-4/Pro35S:ABI5 transgenic lines in genetic screens. We show that inhibition of embryonic axis elongation in response to ABA involves (1) basipetal auxin transport from the root apex to the elongation zone via AUX1 and PIN2 carriers and (2) ABA-dependent potentiation of auxin signaling responses, which could involve downregulation of the expression of the Aux/IAA genes AXR2/IAA7 and AXR3/IAA17 in the epidermal elongating zone of the embryonic axis. Thus, AXR2/IAA7, and possibly also AXR3/IAA17, is a negative regulator in both auxin and ABA signaling to repress axis elongation. The model shown in Figure 9 summarizes these findings and...
integrates the well-documented view that degradation of Aux/IAA proteins releases the activity of specific ARF factors.

In mature *Arabidopsis* embryos, the embryonic axis is a precisely patterned organ composed of hypocotyl and root precursor cells whose fate was set during embryogenesis (Scheres et al., 1994; reviewed in Jenik et al., 2007; Nawy et al., 2008) and that express specific molecular markers (e.g., PIN7 in Supplemental Figure 4A online; Lin and Schiefelbein, 2001). Embryonic axis differentiation toward a mature hypocotyl and root is poorly understood. At early stages of seed germination, axis precursor cells are morphologically indistinguishable, and the emergence of root hairs at the root-hypocotyl junction (the collet, see arrows in Figure 8; see Supplemental Figure 5 online) marks the first signs of differentiation, 4 to 6 h after endosperm rupture under normal conditions. This process is accompanied by hypocotyl cell elongation and greening, as well as root cell elongation and division.

During its early stages of differentiation, the axis behaves as a single organ; both hypocotyl and radicle precursor cells stop their elongation in response to ABA. At later stages (i.e., once the collet starts to differentiate), the growth inhibitory effect of ABA diminishes dramatically. We previously proposed that this early time window of responsiveness to ABA serves a physiological role: that of retaining the highly protected embryonic character of the plant before it develops into a young seedling (Lopez-Molina et al., 2001). Here, we could show that exogenous application of auxin also elicits differential responses depending on the growth stage of the axis: (1) prior to collet differentiation, auxin represses the elongation of the entire embryonic axis; (2) thereafter, auxin generally efficiently inhibits root cell elongation while it has little effect on that of hypocotyl cells, even stimulating it under certain conditions (Romano et al., 1995; Smalle et al., 1997; Gray et al., 1998; Collett et al., 2000). These observations are consistent with the existence of an early crosstalk between ABA- and

Figure 8. AXR2/IAA7 and AXR3/IAA17 Upstream Sequences Are Transcriptionally Active in the Peripheral Elongation Zone; ABA Represses AXR2/IAA7 and AXR3/IAA17 mRNA Expression.

(A) Localization of AXR2/IAA7 promoter activity during early seedling growth. Pictures of wild-type transgenic lines expressing the *uidA* gene under the control of the AXR2/IAA7 promoter. Whole-seed staining is visible only 42 to 45 h after seed imbibition on normal germination medium. Squares represent the areas magnified in the right panels. Arrows indicate the hypocotyl/root junction (collet).

(B) Localization of AXR3/IAA17 promoter activity during early seedling growth. Pictures of wild-type transgenic line expressing the *uidA* gene under the control of the AXR3/IAA17 promoter. Whole-seed staining was performed 37 h after seed imbibition on normal germination medium. Squares represent the areas magnified in the left panels.

(C) RNA gel blot analysis of AXR2/IAA7 and AXR3/IAA17 mRNA levels in wild-type (Col) and aux1-21 (aux1) during embryonic axis elongation. Seeds were transferred upon endosperm rupture (t0; i.e., 34 h after seed imbibition) to normal medium (MS) or medium supplemented with 2 μM ABA for 1.5, 3, or 10 h, as indicated. rRNA is shown as a loading control.
auxin-dependent signals to repress early axis elongation and maintain its embryonic character.

We propose that axis elongation repression in response to ABA is sustained by a basipetal auxin flow from the radicle tip toward the elongation zone via the lateral root cap. This conclusion is based on the observations that (1) AUX1 is mainly localized in the lateral root cap and columella cells (Figure 3; see Supplemental Figure 3A online); (2) PIN2 is localized to the epidermal and cortical cells of the axis elongation zone (Figure 4C); and (3) axis elongation in both aux1 and pin2 mutants is insensitive to ABA. In seedlings, AUX1 is polarly localized to the plasma membrane of all cell types with the notable exception of epidermal and cortical cells (green). In the elongation zone, auxin activates its signaling pathway (red) by binding to TIR1/AFB F-box proteins, promoting the degradation of the Aux/IAA repressors AXR2/IAA7 and possibly AXR3/IAA17. This would, in turn, activate unknown transcriptional regulator ARFs to repress cell elongation. ARFs appear in brackets because their involvement in ABA- and auxin-dependent repression of embryonic axis elongation remains speculative. We propose that ABA (blue) potentiates the auxin pathway by strongly decreasing the mRNA levels of the Aux/IAA repressor AXR2/IAA7 (and possibly AXR3/IAA17).

Figure 9. A Model of ABA and Auxin Crosstalk for the Repression of Embryonic Axis Elongation.

This model is drawn on a magnified confocal micrograph of the embryonic axis tip of a wild-type line expressing ProAUX1:AUX1-YFP (Figure 4; see Methods). Auxin (red) is distributed from the radicle tip to the elongation zone via the influx facilitator AUX1 located in the root cap (yellow) and the efflux carrier PIN2 polarly localized in the elongating epidermal and cortical cells (green). In the elongation zone, auxin activates its signaling pathway (red) by binding to TIR1/AFB F-box proteins, promoting the degradation of the Aux/IAA repressors AXR2/IAA7 and possibly AXR3/IAA17. This would, in turn, activate unknown transcriptional regulator ARFs to repress cell elongation. ARFs appear in brackets because their involvement in ABA- and auxin-dependent repression of embryonic axis elongation remains speculative. We propose that ABA (blue) potentiates the auxin pathway by strongly decreasing the mRNA levels of the Aux/IAA repressor AXR2/IAA7 (and possibly AXR3/IAA17).

auxin-dependent signals to repress early axis elongation and maintain its embryonic character.

We propose that axis elongation repression in response to ABA is sustained by a basipetal auxin flow from the radicle tip toward the elongation zone via the lateral root cap. This conclusion is based on the observations that (1) AUX1 is mainly localized in the lateral root cap and columella cells (Figure 3; see Supplemental Figure 3A online); (2) PIN2 is localized to the epidermal and cortical cells of the axis elongation zone (Figure 4C); and (3) axis elongation in both aux1 and pin2 mutants is insensitive to ABA. In seedlings, AUX1 is polarly localized to the plasma membrane of all cell types with the notable exception of the lateral root cap and columella cells (Dharmasiri et al., 2006). Our confocal studies cannot exclude that an undetected (e.g., in internal parts of the embryo) and polarly localized AUX1 may mediate ABA-dependent repression of axis elongation. However, genetic studies have shown that AUX1 polar distribution absolutely requires AXR4, which encodes a protein of unknown function (Dharmasiri et al., 2006). We noticed that axr4-2 recessive mutants have normal early seedling growth responses to ABA (see Supplemental Figure 6 online). This may be taken as an indirect indication that no undetected and polarly localized AUX1 plays any large role in repressing axis elongation in response to ABA.

We provided evidence that ABA enhances auxin-dependent signaling rather than increasing auxin flow or auxin levels, and we identified AXR2/IAA7 as a central component of both ABA- and auxin-dependent pathways. This is based on the observations that (1) axis growth in axr2-1 mutants, bearing a dominant mutant form of AXR2/IAA7 preventing ABA-dependent repression, is strongly insensitive to ABA, whereas (2) axis growth in the recessive, loss-of-function, axr2/iaa7 mutant alleles is hypersensitive to ABA.

In addition to Aux/IAAs, auxin is known to induce the expression of other auxin-responsive gene families, such as GH3 (for GRETCHENHAGEN-3) and SAUR (for Small Auxin Up-Regulated) genes. To better document the general effect of ABA on auxin-responsive genes, we investigated the expression of GH3.5, GH3.6, SAUR9, and IAA2 mRNA in whole embryos at the time of embryonic axis elongation. RNA gel blot analysis indicates the occurrence of a moderate and transient increase in GH3.5, GH3.6, and SAUR9 mRNA expression 1.5 to 3 h upon transfer to ABA after endosperm rupture (see Supplemental Figure 7 online). However, thereafter, ABA tends overall to restrain auxin-responsive gene expression such that GH3.5, GH3.6, SAUR9, and IAA2 mRNA expression remains at the similar low levels found prior to transfer (note that in the case of SAUR9, the blot is overloaded at 10 h). By contrast, GH3.5, GH3.6, SAUR9, and IAA2 mRNA expression increased 10 h after transfer under normal conditions (i.e., after completion of embryonic axis elongation). Overall, our data could be compatible with the notion that ABA triggers a rapid increase in auxin signaling that may or may not occur at the whole embryo level. However, thereafter, it appears that ABA limits the expression of auxin-responsive genes over time at the whole embryo level. This may be the consequence of the ABA-dependent arrest of development (perhaps associated with auxin levels permanently kept low; Figures 6C and 6D) rather than a reflection of increased auxin signaling in the elongation zone, which involves a restricted number of cells. Indeed, the auxin-responsive genes analyzed here are not necessarily expected to be solely expressed in the elongation zone as it is clearly apparent for IAA2 (Figures 6A and 6B).

The pattern of AXR2/IAA7 expression during early seedling development suggests a mechanism by which ABA would enhance auxin signaling. Indeed, under normal conditions, AXR2/IAA7 expression increases during embryonic axis elongation but is markedly repressed upon ABA treatment (Figure 8C). The fact that AXR2/IAA7 promoter activity is detected mainly in the epidermal elongation zone during early development (Figure 8A) suggests that this ABA-dependent repression affects AXR2/IAA7 levels in this zone. This repression appears to be specific to ABA. Indeed, on one hand auxin tends to stimulate Aux/IAA gene expression, including that of AXR2/IAA7 (Abel et al., 1995). On the other hand ABA also represses AXR2/IAA7 mRNA levels in aux1 mutants, in which auxin flow to the elongation zone is expected to be drastically reduced (Figure 8C). Thus, ABA may
stimulate auxin signaling by directly repressing AXR2/IAA7 mRNA expression and perhaps also that of AOX3/IAA17.

If AOX2/IAA7 were to be the sole factor repressing auxin signaling in response to ABA, then in its absence (as in a axr2/iaa7 knockout mutant), the plant would fail to respond to ABA and would not repress axis elongation (i.e., would be insensitive to ABA). Since this is not what we observe, we must speculate that AOX2/IAA7 is not the sole Aux/IAA being targeted by ABA or that ABA potentiates auxin signaling in other ways or both. The view that other Aux/IAA factors are being targeted by ABA is consistent with our observations that (1) AOX3/IAA17 upstream promoter sequences are actively transcribed in the elongation zone and (2) ABA represses AOX3/IAA17 mRNA levels (Figure 8C).

Downregulation of AOX2/IAA7 mRNA levels by ABA could involve transcriptional repression by transcription factors ABI3 and ABI5, whose role as positive regulators of ABA signaling during seed germination and early seedling growth is well established (Lopez-Molina et al., 2002). ABI5 belongs to a family of basic leucine-zipper transcription factors binding to ACGT-containing ABA-responsive elements (ABREs; Lopez-Molina and Chua, 2000; Carles et al., 2002). By contrast, ABI3 DNA binding activity has not been clearly established, although some authors have proposed that ABI3 may interact with ABI5 to regulate gene transcription (Finkelstein et al., 2002). Analysis of AOX2/IAA7 and AOX3/IAA17 promoter sequences revealed a canonical ABRE element (CACGTG) in each gene within 100 bp upstream of the transcription start site defined according to the cDNA sequences available in The Arabidopsis Information Resource database (http://www.Arabidopsis.org/). This suggests that ABI3 and ABI5 may interact to repress AOX2/IAA7 and AOX3/IAA17 transcription by binding to this particular ABRE element. AOX2/IAA7 and AOX3/IAA17 mRNA levels could also be downregulated posttranscriptionally given that a number of mRNA binding proteins have been shown to modulate ABA signaling responses. For example, ABH1, encoding a CAP binding protein, negatively regulates ABA signaling during seed germination in an unknown manner (Hugouvieux et al., 2001). Thus, ABH1 may interfere with the capping process of AOX2/IAA7 and AOX3/IAA17 transcripts, leading to their destabilization.

Aux/IAA factors repress auxin responses by binding to ARF transcriptional factors, thus maintaining them in an inactive form (reviewed in Quint and Gray, 2006). ARF factors are known to act redundantly in auxin-dependent responses, and it is therefore not surprising that we could not identify a single recessive mutation in an ARF gene affected in ABA-dependent repression of embryonic axis growth (Wang et al., 2005; Weijers et al., 2005; reviewed in Guilfoyle and Hagen, 2007). The putative ARF factors targeted by AOX2/IAA7 remain to be identified. A previous report indicated that ARF10 participates in repressing the seed-to-seedling transition in response to ABA. Indeed, lines overexpressing miR160, which targets the degradation of ARF10, ARF16, and ARF17 mRNAs, and a line expressing mARF10, containing a mutated version of ARF10 preventing its recognition by miR160, were reported to display hypersensitive and insensitive responses to ABA during early development, respectively (Liu et al., 2007). However, we found that these lines had normal axis growth responses to ABA under our experimental conditions. Thus, ARF10 may be involved in ABA-dependent processes other than embryonic axis elongation, such as endosperm rupture. Interestingly, genetic analysis showed that ARF10 and ARF16 are necessary for root cap formation in a redundant manner (Wang et al., 2005). Together with our finding that root cap-derived basipetal auxin flow is critical for ABA-dependent repression of axis growth, the observations by Liu et al. (2007) could be explained by a severe alteration of the auxin flow in the abnormal root cap rather than a signaling defect due to the absence of ARF10.

Further studies are needed to identify the cellular processes targeted by auxin to prevent early axis elongation. Auxin has been proposed to modulate cellular elongation by regulating the activity of ion channels, which influence cell turgor, as well as the expression and product activity of genes encoding cell wall components. The latter includes genes encoding expansins (e.g., EXPα1), xylan-modifying enzymes (e.g., XTR8), and pectin methylesterases whose expression is regulated by auxin and altered in axr3/iaa17 in particular but also in other arf or iaa mutants (Oovernoor et al., 2005). Consistent with this possibility, expression of EXPα1 and XTR8 genes was drastically reduced in response to both ABA and auxin during embryonic axis elongation (see Supplemental Figure 8 online).

Finally, given the variety of the developmental processes regulated by ABA during the seed-to-seedling transition, we sought to identify additional auxin signaling components that could mediate ABA-dependent responses. Together with available whole-genome expression data sets, we found that AUX1, PIN2, PIN3, and PIN7, as well as genes encoding auxin-signaling factors, are expressed during germination and subsequent growth. We also found that the high auxin levels in dry seeds are maintained up to 24 h after imbibition. Moreover, ProAIA2:GUS and DR5:GUS auxin response reporters are active in the vascular tissues of the whole embryo, as well as in the micropylar area, prior to endosperm rupture (see Supplemental Figure 9 online). Endosperm rupture is thought to occur at the micropyle through the combined action of endosperm weakening and pressure from the elongating embryonic axis (Müller et al., 2006). Therefore, it is plausible that ABA-dependent repression of endosperm rupture is also mediated through auxin-dependent regulation of genes encoding cell wall modification enzymes in the micropylar endosperm. Together, these observations indicate that auxin-dependent pathways are operative very early upon seed imbibition.

METHODS

Plant Material

Throughout this study, we used nondormant Arabidopsis thaliana seeds without a seed stratification procedure. We refer to seeds imbibed under “normal conditions” when seeds are sown in a standard MS medium containing 0.8% (w/v) agar-agar (WVR).

The aux1 alleles used in this study (aux1-7, aux1-21, and aux1-22 in Col ecotype) were described previously (Bennett et al., 1996) and provided by Cris Kohlemeyer. The ProAUX1:AUX1-YFP line (in Col ecotype) was used as described described by Swarup et al. (2004) and was provided by Thierry Gaude. The wild-type and aux1-100 lines (in Wassilewskija ecotype) expressing the ProAIA2:GUS transgene were described by Swarup et al. (2001) and provided by Ranjan Swarup and Malcolm Bennett. The DR5:GUS reporter line (in Col ecotype) was initially described by Ulmasov et al. (1997) and provided by Thierry Gaude.
et al. (2006), was provided by Lawrence Hobbie. ProAXR2/IAA7:GUS abi3-9 transgenic lines were obtained from Jason Reed and Ottoline Leyser, (Tian et al., 2002) and provided by Ranjan Swarup. axr3-1 mutant (Rouse et al., 1998; Nagpal et al., 2000) was provided by Rajanian Swarup. Friml et al., 2003). alleles were provided by Ruth Finkelstein. SALK_089809 and abi5-4/Pro35S:ABI5 axr2/iaa7 mutants were provided by Jason Reed. (Friml et al., 2002a, 2002b, 2003) were also obtained from the NASC. All pin3-5 mutants were provided by Jin Gaude. The pin2 mutant used in this study is the ein1-1 allele in Col (Roman et al., 1995). The ProPIN2:PIN2-GFP line is also in the ein1-1 background (Xu and Scheres, 2005). Both were provided by Thierry Gaude. ProPIN3:GUS, ProPIN4:GUS, and ProPIN7:GUS transgenic lines in wild-type Col background (Friml et al., 2002a, 2002b, 2003) were also obtained from the NASC. All axr2/iaa7 mutants were provided by Jason Reed. axr2-1 (in Col ecotype) and axr2-5 (in Wassilewskija ecotype) were previously described (Nagpal et al., 2000). SALK_089809 insertion line in AXR2/IAA7 (Col ecotype) is referenced in the SALK SIGnAL database (http://signal.salk.edu/; Alonso et al., 2003). axr3-1 mutant (Rouse et al., 1998; Nagpal et al., 2000) was provided by Rajanian Swarup. axr4-2 mutant, described by Dharmasiri et al. (2006), was provided by Lawrence Hobbe. ProAXR2/IAA7:GUS (Tian et al., 2002) and ProAXR3/IAA17:GUS (Tanimoto et al., 2007) transgenic lines were obtained from Jason Reed and Ottoline Leyser, respectively. abi3-9 mutant, described by Nambara et al. (2002), was provided by Eiji Nambara. abi4-1 (Finkelstein et al., 1998) and abi5-3 (Finkelstein and Lynch, 2000) alleles were provided by Ruth Finkelstein. Other mutants analyzed are listed in Supplemental Table 1 online.

Isolation and Molecular Cloning of aux1-301/1rt

A population of 20,000 abi5-4/Pro3SS:ABI5 seeds (M0) was chemically mutagenized using 0.3% ethyl methanesulfonate (64292; Sigma-Aldrich) according to standard procedures (Lightner and Caspar, 1998). The progeny of 15,000 mutagenized seeds was harvested in 15 pools of -1,000,000 seeds and used to screen for mutant seeds displaying resistance to ABA (0.5 μM) at the level of testa and endosperm rupture as well as embryonic axis elongation, cotedylon expansion, and greening. This led us to identify in five pools three mutants displaying resistance to ABA during germination and early seedling growth. This work focuses on the particular recessive aux1-301/1rt locus (see Supplemental Figure 1A online). Map-based cloning was performed as described previously for the abi5 mutant (Lopez-Molina and Cha, 2000).

Germination and Early Growth Assays

All seed batches compared in this study were harvested on the same day from plants grown side by side (i.e., identical environmental conditions). Dry siliques were obtained -8 weeks after planting and left for a further 4 weeks at room temperature prior to seed harvesting. Seeds were then permanently stored at 4°C. Seeds obtained in this manner lacked dormancy. For germination and embryonic axis elongation assays, seeds were surface sterilized by incubation for 10 to 15 min in 70% ethanol and 0.05% SDS and then rinsed in 95% ethanol for 1 min. After drying, they were immediately sown in plates with MS medium containing 0.8% (w/v) agar-agar (20768292; VWR) and 0.5 g·L-1 MES. Medium was supplemented with ABA (A1049; Sigma-Aldrich), NAA (N0640; Sigma-Aldrich), 2,4-D (45415; Sigma-Aldrich), NOA (255416; Sigma-Aldrich), BH-IAA, or PEO-IAA (both provided by K. Hayashi) according to the germination condition examined. Plates were incubated in a climate-controlled room (20 to 25°C, 16 h light/day, 70% humidity). Germinating seeds were examined with a Stermi 2000 (Zeiss) stereomicroscope and photographed with a high-resolution digital camera (Canon Power G6, 7.1 megapixels) at different times after seed imbibition, as indicated in the figures. Photographs were analyzed and quantified using the public domain image analysis program ImageJ version 1.38x (http://rsb.info.nih.gov/ij/). For axis elongation rate, we measured the elongation of individual embryonic axes between two time points and took the average of the resulting speed (n = 13 for all experiments). Error bars in histograms report the SD. We used Student’s t test (two-tailed assuming unequal variance) to compare average mean values to determine if their differences were statistically significant (P < 0.01).

Fluorescence Microscopy

The images were collected using a TCS SP2 AOBS confocal laser microscope (Leica) in the NCCR Frontiers in Genetics bioimaging service (http://www.frontiers-in-genetics.org/).

Measurement and Histochemical Localization of GUS Activity

For measurement of GUS activity, germinating seeds were homogenized by grinding in a mortar and weighed out into Eppendorf tubes. GUS activity was scored by fluorometric measurement using 4-methylumbelliferone β-D-glucuronide (Sigma-Aldrich) as substrate (Jefferson, 1987). Fluorescence was measured using a TKO 100 mini fluorometer (Hoefer Scientific). For histochemical localization, material was fixed in 80% aceton at -20°C for more than 24 h. After rinsing, staining was performed using 5-bromo-4-chloro-3-indoxyl-β-D-glucuronic acid (Bio-synth) as substrate (Jefferson, 1987). Reactions were conducted at 37°C in the dark for 15 min to 48 h. Images were collected using a SMZ1500 stereomicroscope (Nikon) coupled to a DS-F1 digital camera (Nikon).

RNA Extraction and RNA Gel Blots

Total RNA was extracted as previously described (Vicient and Delseny, 1999). RNA concentrations were measured using a GeneQuant Pro spectrophotometer (Biochrom). RNA gel blot hybridizations were performed by standard procedures; RNA immobilized on membranes was stained with methylene blue and used as a loading control (Sambrook et al., 1989). AUX1 full-length open reading frame DNA probe was amplified from cDNA with 5′-CAGTCTAGTCTAAACACATGCG-3′ and 5′-TGGTAAAGTACATCTTTCTCTG-3′. AXR2/IAA7 3′ untranslated region-specific probe was amplified from cDNA with 5′-GAGGACAAGTGGAGAAGTACTG-3′ and 5′-AATAGTAAACATACGACAGG-3′. AXR3/IAA17 3′ untranslated region-specific probe was amplified from cDNA with 5′-AGTCAATTAAAGGATAGTGT-3′ and 5′-ATAGCATTAGGATAGGTGT-3′. IA2-specific probe was amplified from genomic DNA with 5′-ACCGACTACCCAGAACA-3′ and 5′-AGTCTTCTGAGTTCTCTCTTACTGCA-3′. EXP1-1-specific probe was amplified with 5′-AACTCTTACCCCTAGGTA-3′ and 5′-ATAACAACTCCTCAAGGAT-3′. XTR8-specific probe was amplified with 5′-AGTACACCATCAGAAAGGT-3′ and 5′-AGGCATGCAAGCAAGGT-3′. GH3.5-specific probe was amplified from genomic DNA with 5′-AGGCCCATACGAGGATCC-3′ and 5′-AAGGCATGAGTGATGACGC-3′. GH3.2-specific probe was amplified from cDNA with 5′-CAAGGCAAAAGTTATTT-3′ and 5′-GCTCCGAGATAAGCAGAT-3′. SAUR9-specific probe was amplified from genomic DNA with 5′-TCCAACTAGGCCGAGAAG-3′ and 5′-AGCTTATCCCTCCAGAACC-3′. Probes were radiolabeled according to standard procedures, and membranes were exposed to phosphorimagery screens for quantifications using a Molecular Imager FX scanner (Bio-Rad).

Protein Extraction and Protein Gel Blot

For analysis of HA-ABI5 protein level in the lr mutant, plant protein extracts were resolved under reducing conditions using 10% SDS/ polyacrylamide gels. Protein blot was performed as described by Piskurewicz et al. (2008), using the monoclonal HA-probe (F-7) from mouse (Santa Cruz Biotechnology; sc-7392 HRP 200 μg·mL-1) as a horseradish peroxidase–conjugated primary antibody (diluted 1:10,000).

IAA Level Quantification

Sample Preparation

Material was homogenized (same material as above for measurement of GUS activity) and weighed out into Eppendorf tubes. A cold solution of 0.05 M phosphate buffer, pH 7.0, containing 0.02% DDTCA was used
for extraction of material. To check the recovery during purification and to validate the quantification, labeled internal standard of 13C6-IAA was added to each sample. Samples were stirred for 15 min at 4°C. After centrifugation (5 min, 12,000 rpm, 4°C), supernatant was collected and acidified to pH 2.7 with 1 M HCl. Finally, samples were purified by solid phase extraction on Varian BondElut C8 (500 mg/3mL) columns, evaporated to dryness, and stored at −20°C before liquid chromatography–mass spectrometry analysis.

Instrumentation

An Acquity UPLC system (Waters), including a binary solvent manager, sample manager, and a Micromass Quattro micro API detector (Waters MS Technologies), was used for auxin analysis. All data were processed by MassLynx software with QuanLynx and QuantOptimize programs (version 4.0; Waters).

HPLC-Electrospray Ionization(+)–Tandem Mass Spectrometry Conditions for Sample Analysis

Samples were dissolved in 30 mL of ACN/water (10/90) and filtered (Micro-spin filter tube; 0.2 μm; 3 min at 5700g; Grace) and 15 mL of sample was injected onto a reversed-phase column (BetaMax Neutral; 150 × 1 mm; particle size 5 μm; Thermo Scientific) with UNIGUARD column protection (Hypurity advance; 10 × 1 mm; 5 μm; Thermo Scientific). The samples were eluted with a 20-min gradient as follows: 0 to 5 min 90/10 A/B, 5 to 10 min 80/20 A/B, 10 to 18 min 70/30 A/B, 18 to 19 min 50/50 A/B, 19 to 20 10/90 A/B (v/v), where A was 1% ACN with 0.1% formic acid and B was 95% ACN with 0.1% formic acid. At the end of the gradient, the column was equilibrated to initial conditions for 5 min. Flow rate was 0.05 mL min⁻¹, and column was eluted at ambient temperature. Under these conditions, retention time for the monitored IAA was 15.36 min. The effluent was passed to the tandem mass spectrometer without postcolumn splitting. Compounds were quantified by multiple reaction monitoring of [M+H]+ and the appropriate product ions.

For selective multiple reaction monitoring experiments, optimized conditions were as follows: capillary voltage, 3.0 kV; source/desolvation gas temperature, 100/250°C; cone/desolvation gas flow rates, 2.0/450 liters h⁻¹; low-mass and high-mass resolution, 10,0; ion energy 1, 1.0 V; ion energy 2, 1.4 V; multiplier voltages, 700 eV. Argon was used as the collision gas with an optimized pressure of 5 × 10⁻⁵ mbar.

The dwell time (IAA = 0.80 s), cone voltages (20 V), and collision energy (15 eV) for diagnostic transitions were optimized to maximize sensitivity. Calibration curves were created by plotting the known concentration of unlabeled/labeled analyte ratio against the calculated response area of the analyte/internal standard ratio. Limit of detection (IAA = 9.3 fmol) and quantification (IAA = 30.8 fmol) were calculated from signal-to-noise ratios of 3:1 and 10:1, respectively.

Accession Numbers

Sequence data from this article can be found in the Arabidopsis Genome Initiative database under the following accession numbers: AUX1 (At2g38120), PIN2 (At5g57090), PIN3 (At1g79040), PIN4 (At2g01420), PIN7 (At1g23080), AXR2/IAA7 (At3g23050), AXR3/IAA17 (At1g04250), IAA2 (At3g23030), AXR4 (At1g54990), ABI3 (At3g24650), ABI4 (At2g40220), ABI5 (At2g36270), GH3.5 (At4g27260), GH3.6 (At5g54510), SAUR9 (At4g36110), XTR8 (At3g44990), and EXPA1 (At1g69530).

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure 1. Isolation and Positional Cloning of long root, a Previously Undiscovered ABA-insensitive Locus.

Supplemental Figure 2. aux1 Is Not Affected in Testa and Endosperm Responses to ABA.

Supplemental Figure 3. ABA Does Not Alter AUX1 Localization and Maintains Low Levels of AUX1 mRNA Expression.

Supplemental Figure 4. PIN3, PIN4, and PIN7 Do Not Participate in the ABA-Dependent Repression of Embryonic Axis Elongation.

Supplemental Figure 5. AXR2/IAA7 and AXR3/IAA17 Upstream Sequences Are Transcriptionally Inactive in the Peripheral Elongation Zone in the Presence of ABA.

Supplemental Figure 6. Repression of axr4 Embryonic Axis Elongation in Response to ABA Is Similar to That of the Wild-Type.

Supplemental Figure 7. ABA Transiently Induces the Expression of Some Auxin-Responsive Genes.

Supplemental Figure 8. Genes Encoding Cell Wall Proteins Are Repressed by Both ABA and Auxin.

Supplemental Figure 9. Auxin Responses Are Active during Germination.

Supplemental Table 1. List of Mutant and Transgenic Lines Used in This Study.

ACKNOWLEDGMENTS

We are especially grateful to Pierre Vassalli for help and numerous suggestions in the writing of this manuscript. We thank Malcolm Bennett and Ranjan Swarup for helpful discussions. We are greatly indebted to the following colleagues for their generous gifts (as detailed in Methods and Supplemental Table 1 online): Ken-ichiro Hayashi, Ranjan Swarup, Malcolm Bennett, Mark Estelle, Jason Reed, Ottoline Leyser, Hiro Nonogaki, Ruth Finkelstein, Cris Kuhlemeier, Lawrence Hobbie, Thierry Gaude, and Xiao-Ya Chen. We thank Christophe Bauer and Jérôme Bosset from the NCCR Frontiers in Genetics Bioimaging service for their help with confocal microscopy. We thank Natsuko Kinoshita, Richard Chappuis, Sandra Oesch, and Yéred Péronnet for their technical support. We wish to thank one reviewer for his helpful clarifications regarding the proper use of certain terms in this manuscript as well as another reviewer for suggesting performing the experiments shown in Figures 5C and 7A. This work was supported by grants from the Swiss National Science Foundation and by the State of Geneva.

Received April 8, 2009; revised July 14, 2009; accepted July 25, 2009; published August 7, 2009.

REFERENCES

