ON THE COVER

The γ-tubulin complex, which is critical for microtubule (MT) nucleation and organization in eukaryotic cells, comprises six γ-tubulin complex proteins (GCPs), with γ-tubulin itself being GCP1. The function of the other GCPs is well-described in animal and fungal cells but not well understood in plant cells. Kong et al. (pages 191–204) show that GCP4 is an indispensable component for the function of γ-tubulin in MT nucleation and organization in plant cells. The cover image shows MT highlighted by a green fluorescent protein-tubulin fusion protein expressed in leaf epidermal cells in Arabidopsis. The paired guard cells in the center exhibit radiating MT arrays, whereas the cortical MTs form complex networks in the surrounding pavement cells.

IN BRIEF

Physcomitrella Reveals a Key Role for Stromal Hsp70 Chaperones in Chloroplast Protein Import
Nancy A. Eckardt 1

Retrotransposon Domain Swapping
Jennifer Mach 2

A Double Lock on Polyploidy-Associated Epigenetic Gene Silencing
Nancy A. Eckardt 3

REVIEW

Evolutionary Studies Illuminate the Structural-Functional Model of Plant Phytochromes
Sarah Mathews 4

RESEARCH ARTICLES

Global Epigenetic and Transcriptional Trends among Two Rice Subspecies and Their Reciprocal Hybrids
Guangming He, Xiaopeng Zhu, Axel A. Elling, Liangbi Chen, Xiangfeng Wang, Lan Guo, Manzhong Liang, Hang He, Huiyong Zhang, Fangfang Chen, Yijun Qi, Runsheng Chen, and Xing-Wang Deng 17

Cooperation of Multiple Chromatin Modifications Can Generate Unanticipated Stability of Epigenetic States in Arabidopsis
Tuncay Baubec, Huy Q. Dinh, Ales Pecinka, Branislava Rakic, Wilfried Rozhon, Bonnie Wohlrab, Arndt von Haeseler, and Ortrun Mittelsten Scheid 34

Bifurcation and Enhancement of Autonomous-Nonautonomous Retrotransposon Partnership through LTR Swapping in Soybean
Jianchang Du, Zhixi Tian, Nathan J. Bowen, Jeremy Schmutz, Randy C. Shoemaker, and Jianxin Ma 48

BLADE-ON-PETIOLE1 Coordinates Organ Determinacy and Axial Polarity in Arabidopsis by Directly Activating ASYMMETRIC LEAVES2
Ji Hyung Jun, Chan Man Ha, and Jennifer C. Fletcher 62

The Plastid Isoform of Triose Phosphate Isomerase Is Required for the Postgerminative Transition from Heterotrophic to Autotrophic Growth in Arabidopsis
Mingjie Chen and Jay J. Thelen 77

ON THE COVER

The γ-tubulin complex, which is critical for microtubule (MT) nucleation and organization in eukaryotic cells, comprises six γ-tubulin complex proteins (GCPs), with γ-tubulin itself being GCP1. The function of the other GCPs is well-described in animal and fungal cells but not well understood in plant cells. Kong et al. (pages 191–204) show that GCP4 is an indispensable component for the function of γ-tubulin in MT nucleation and organization in plant cells. The cover image shows MT highlighted by a green fluorescent protein-tubulin fusion protein expressed in leaf epidermal cells in Arabidopsis. The paired guard cells in the center exhibit radiating MT arrays, whereas the cortical MTs form complex networks in the surrounding pavement cells.
The **ABORTED MICROSPORES** Regulatory Network Is Required for Postmeiotic Male Reproductive Development in *Arabidopsis thaliana*
Jie Xu, Caiyun Yang, Zheng Yuan, Dasheng Zhang, Martha Y. Gondwe, Zhiwen Ding, Wanqi Liang, Dabing Zhang, and Zoe A. Wilson

Arabidopsis CULLIN4-Damaged DNA Binding Protein 1 Interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1-SUPPRESSOR OF PHYA Complexes to Regulate Photomorphogenesis and Flowering Time
Haodong Chen, Xi Huang, Giuliana Gusmaroli, William Terzaghi, On Sun Lau, Yuki Yanagawa, Yu Zhang, Jigang Li, Jae-Hoon Lee, Danneng Zhu, and Xing Wang Deng

The **RAD23 Family Provides an Essential Connection between the 26S Proteasome and Ubiquitylated Proteins in Arabidopsis**
Lisa M. Farmer, Adam J. Book, Kwang-Hee Lee, Ya-Ling Lin, Hongyong Fu, and Richard D. Vierstra

Auxin-Mediated Ribosomal Biogenesis Regulates Vacuolar Trafficking in Arabidopsis
Abel Rosado, Eun Ju Sohn, Georgia Drakakaki, Songqin Pan, Alexandra Swidergal, Yuqing Xiong, Byung-Ho Kang, Ray A. Bressan, and Natasha V. Raikhel

Loss-of-Function Mutations of Retromer Large Subunit Genes Suppress the Phenotype of an Arabidopsis zig Mutant That Lacks Qb-SNARE VTI11
Yasuko Hashiguchi, Mitsuru Niihama, Tetsuya Takahashi, Chieko Saito, Akihiko Nakano, Masao Tasaka, and Miyo Terao Morita

Cytochrome P450 Family Member CYP704B2 Catalyzes the \(\omega\)-Hydroxylation of Fatty Acids and Is Required for Anther Cutin Biosynthesis and Pollen Exine Formation in Rice
Hui Li, Franck Pinot, Vincent Sauveplane, Danièle Werck-Reichhart, Patrik Diehl, Lukas Schreiber, Rochus Franke, Ping Zhang, Liang Chen, Yawei Gao, Wanqi Liang, and Dabing Zhang

The \(\gamma\)-Tubulin Complex Protein GCP4 Is Required for Organizing Functional Microtubule Arrays in Arabidopsis thaliana
Zhaosheng Kong, Takashi Hotta, Yuh-Ru Julie Lee, Tetsuya Horio, and Bo Liu

A Stromal Heat Shock Protein 70 System Functions in Protein Import into Chloroplasts in the Moss Physcomitrella patens
Lan-Xin Shi and Steven M. Theg

An Arabidopsis Mutant with High Cyclic Electron Flow around Photosystem I (hcef) Involving the NADPH Dehydrogenase Complex
Aaron K. Livingston, Jeffrey A. Cruz, Kaori Kohzuma, Amit Dhingra, and David M. Kramer

MRL1, a Conserved Pentatricopeptide Repeat Protein, Is Required for Stabilization of rbcL mRNA in Chlamydomonas and Arabidopsis
Xenie Johnson, Katia Wostrikoff, Giovanni Finazzi, Richard Kuras, Christian Schwarz, Sandrine Bujaldon, Joerg Nickelsen, David B. Stern, Francis-André Wollman, and Olivier Vallon

The Arabidopsis Prohibitin Gene PHB3 Functions in Nitric Oxide–Mediated Responses and in Hydrogen Peroxide–Induced Nitric Oxide Accumulation
Yong Wang, Amber Ries, Kati Wu, Albert Yang, and Nigel M. Crawford

Tomato 14-3-3 Protein 7 Positively Regulates Immunity-Associated Programmed Cell Death by Enhancing Protein Abundance and Signaling Ability of MAPKKK
Chang-Sik Oh, Kerry F. Pedley, and Gregory B. Martin
Jasmonate and ppHsystemin Regulate Key Malonylation Steps in the
Biosynthesis of 17-Hydroxygeranyllinalool Diterpene Glycosides, an
Abundant and Effective Direct Defense against Herbivores in
Nicotiana attenuata

Sven Heiling, Meredith C. Schuman, Matthias Schoettner,
Purba Mukerjee, Beatrice Berger, Bernd Schneider, Amir R. Jassbi,
and Ian T. Baldwin

Some figures in this article are displayed in color online but in black and white in the print edition.

Online version contains Web-only data.

Open Access articles can be viewed online without a subscription.
This information is current as of June 24, 2017

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>eTOCs</td>
<td>Sign up for eTOCs at: http://www.plantcell.org/cgi/alerts/ctmain</td>
</tr>
<tr>
<td>CiteTrack Alerts</td>
<td>Sign up for CiteTrack Alerts at: http://www.plantcell.org/cgi/alerts/ctmain</td>
</tr>
<tr>
<td>Subscription Information</td>
<td>Subscription Information for The Plant Cell and Plant Physiology is available at: http://www.aspb.org/publications/subscriptions.cfm</td>
</tr>
</tbody>
</table>