ON THE COVER

Very long chain fatty acids (VLCFAs) are essential for many aspects of plant development. Roudier et al. (pages 364–375) show that the immunophilin PASTICCINO1 (PAS1) is required for VLCFA synthesis in the endoplasmic reticulum. Impairment of PAS1 function results in defective lateral root formation associated with local alteration of polar auxin distribution. VLCFA reduction causes mis-targeting of the auxin efflux carrier PIN FORMED 1 (PIN1) but not the auxin influx carrier AUX1. The cover displays the expression of pAUX1:AUX1-YFP in an Arabidopsis wild-type background during lateral root outgrowth (green) from the primary root (red). This work shows that VLCFAs are essential for polar auxin transport and tissue patterning during plant development.

IN BRIEF

Mother Knows Best: Maternal Influence on Early Embryogenesis
Nancy R. Hofmann 293

Differentiation among the ARGONAUTES
Jennifer Mach 294

Redox Regulation of Auxin Signaling and Plant Development
Nancy A. Eckardt 295

REVIEW

Out of the Mouths of Plants: The Molecular Basis of the Evolution and Diversity of Stomatal Development
Kylee M. Peterson, Amanda L. Rychel, and Keiko U. Torii 296

RESEARCH ARTICLES

Embryo and Endosperm Inherit Distinct Chromatin and Transcriptional States from the Female Gametes in Arabidopsis
Marion Pillot, Célia Baroux, Mario Arteaga Vazquez, Daphné Autran, Olivier Leblanc, Jean Philippe Vielle-Calzada, Uel Grossniklaus, and Daniel Grimanelli 307

The Arabidopsis RNA-Directed DNA Methylation Argonautes Functionally Diverge Based on Their Expression and Interaction with Target Loci

SLOW MOTION Is Required for Within-Plant Auxin Homeostasis and Normal Timing of Lateral Organ Initiation at the Shoot Meristem in Arabidopsis
Daniel Lohmann, Nicola Stacey, Holger Breuningr, Yusuke Jikumaru, Dörte Müller, Adrien Sicard, Ottoline Leyser, Shinjiro Yamaguchi, and Michael Lenhard 335

The Arabidopsis thaliana STYLISH1 Protein Acts as a Transcriptional Activator Regulating Auxin Biosynthesis
D. Magnus Eklund, Veronika Ståldal, Isabel Valsecchi, Izabela Cierlik, Caitiriona Eriksson, Keiichiro Hiratsu, Masaru Ohme-Takagi, Jens F. Sundström, Mattias Thelander, Inés Ezcurra, and Eva Sundberg 349
Very-Long-Chain Fatty Acids Are Involved in Polar Auxin Transport and Developmental Patterning in *Arabidopsis* [6]
François Roudier, Lionel Gissot, Frédéric Beaudoin, Richard Haslam, Louise Michaelson, Jessica Marion, Diana Molino, Amparo Lima, Liên Bach, Halima Morin, Frédérique Tellier, Jean-Christophe Palaucqi, Yannick Bellec, Charlotte Renne, Martine Miquel, Marco DaCosta, Julien Vignard, Christine Rochat, Jonathan E. Markham, Patrick Moreau, Johnathan Napier, and Jean-Denis Faure

Talaat Bashandy, Jocelyne Guilleminot, Teva Vernoux, David Caparros-Ruiz, Karin Ljung, Yves Meyer, and Jean-Philippe Reichheld

The *Arabidopsis* rcn1-1 Mutation Impairs Dephosphorylation of Phot2, Resulting in Enhanced Blue Light Responses [6]
Tong-Seung Tseng and Winslow R. Briggs

Arabidopsis S-Sulfocysteine Synthase Activity Is Essential for Chloroplast Function and Long-Day Light-Dependent Redox Control [6]
Maria Angeles Bermudez, Maria Angeles Páez-Ochoa, Cecilia Gotor, and Luis C. Romero

The Central Element Protein ZEP1 of the Synaptonemal Complex Regulates the Number of Crossovers during Meiosis in Rice [6]
Mo Wang, Kejian Wang, Ding Tang, Cunxu Wei, Ming Li, Yi Shen, Zhengchang Chi, Minghong Gu, and Zhukuan Cheng

The *Arabidopsis* Chloroplast Division Protein DYNAMIN-RELATED PROTEIN5B Also Mediates Peroxisome Division [6]
Xinchun Zhang and Jianping Hu

RNA PROCESSING FACTOR2 Is Required for 5′ End Processing of *nad9* and *cox3* mRNAs in Mitochondria of *Arabidopsis thaliana* [6]
Christian Jonietz, Joachim Forner, Angela Hölzle, Sabine Thuss, and Stefan Binder

Structure of a Heterotetrameric Geranyl Pyrophosphate Synthase from Mint (*Mentha piperita*) Reveals Intersubunit Regulation [6]
Tao-Hsin Chang, Fu-Lien Hsieh, Tzu-Ping Ko, Kuo-Hsun Teng, Po-Huang Liang, and Andrew H.-J. Wang

A Novel Role for *Arabidopsis* Mitochondrial ABC Transporter ATM3 in Molybdenum Cofactor Biosynthesis [6]
Julia Teschner, Nicole Lachmann, Jutta Schulze, Mirco Geisler, Kristina Selbach, Jose Santamaria-Araujo, Janneke Balk, Ralf R. Mendel, and Florian Bittner

Hernan Garcia-Ruiz, Atsushi Takeda, Elisabeth J. Chapman, Christopher M. Sullivan, Noah Fahlgren, Katherine J. Brempelis, and James C. Carrington

Cell Cycle–Mediated Regulation of Plant Infection by the Rice Blast Fungus [6]
Diane G.O. Saunders, Stephen J. Aves, and Nicholas J. Talbot

PEPR2 Is a Second Receptor for the Pep1 and Pep2 Peptides and Contributes to Defense Responses in *Arabidopsis* [6]
Yube Yamaguchi, Alisa Huffaker, Anthony C. Bryan, Frans E. Tax, and Clarence A. Ryan
HSP70 and Its Cochaperone CPIP Promote Potyvirus Infection in *Nicotiana benthamiana* by Regulating Viral Coat Protein Functions

Anders Hafren, Daniel Hofius, Gunilla Rönnholm, Uwe Sonnewald, and Kristiina Mäkinen

- Some figures in this article are displayed in color online but in black and white in the print edition.
- Online version contains Web-only data.
- Open Access articles can be viewed online without a subscription.
This information is current as of June 21, 2017

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>eTOCs</td>
<td>Sign up for eTOCs at: http://www.plantcell.org/cgi/alerts/ctmain</td>
</tr>
<tr>
<td>CiteTrack Alerts</td>
<td>Sign up for CiteTrack Alerts at: http://www.plantcell.org/cgi/alerts/ctmain</td>
</tr>
<tr>
<td>Subscription Information</td>
<td>Subscription Information for The Plant Cell and Plant Physiology is available at: http://www.aspb.org/publications/subscriptions.cfm</td>
</tr>
</tbody>
</table>